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Abstract

We numerically study the orbital stability with Poincaré
map in seven dimensions of a cyclic dynamically sta-
ble gait which is composed of single and double support
phases and impacts. Physical constraints as ground re-
actions and limited torques are taken into account with
the control. The double support is used to improve the
stability of the biped. Numerical tests are presented,
where the maximum modulus of the eigenvalues of the
linearized Poincaré map around the fixed point of the
periodic motion is checked with the power method to be
less than one, to ensure stability.

1 Introduction

To understand better the effects of the gravity on the
dynamically stable gait the study of walking bipeds
without feet is an active research area currently, see
[1, 2, 3, 4, 6, 13]. The main difficulty is that in single
support phase, the biped is under actuated. During this
phase there is no equilibrium point which is asymptot-
ically stable. It is necessary to introduce the concept
of orbital asymptotical stability, mainly studied with
Poincaré method. Poincaré method consists in study-
ing the stability of Poincaré map, the application which
give the intersection of the orbit with a surface for a
given previous intersection point. In [4] a linearization
of the Poincaré map is calculated analytically. In [5]
the linearization is calculated numericlally. In [7] this
concept of orbital stability and Poincaré method was
extended to system with impulse effects, viewed that
usually the impact of the swing leg with the ground
is considered as impulsive. In [7] the dimension of
Poincaré map is reduced to one, which greatly simplify
the study.
Some authors increased the convergence to the periodic
orbit by modifying the length step or the inclination of

the trunk from one step to the next step, see [1]. Other
authors used a double support phase, which also allows
to increase stability. In the paper [14] a walking gait
with single and double support phases is designed for
a biped without feet. This reference gait is tested with
the robot Sony AIBO. With this strategy using a dou-
ble support phase for which the biped is over actuated
they are able to start from a stop phase.

We propose also to include a double support phase here
to design a cyclic gait easier and to increase the con-
vergence velocity to a cyclic stable gait without any
decoupled system. In [11] we showed that for a prob-
lem where the Poincaré map is reduced to a one dimen-
sion, there is a zone of one step convergence. To design
this zone the constraints of limited torques, no take
off, no slipping are taken into account. In the present
paper we extent the stability study to the whole state
of the biped, but we only study local stability around
reference motion. We consider the numerical lineariza-
tion of a Poincaré map of dimension seven. We use
the physical data of RABBIT, a five link experimen-
tal biped without feet, which is presented in [3]. We
designed bipedal cyclic gaits which are composed of a
single support and a double support phases. We de-
fined parameters for this gait which are chosen with
an optimization process, see [10]. The unilateral con-
straints are taken into account in the definition of the
motion. We designed a PD based controller satisfying
the unilateral and torque constraints.

The organization of the paper is the following. Sec-
tion 2 details the biped presentation. Afterwards the
dynamic model in single and double support phases
and the impact equations are recalled in this section.
The definition of the motion is done Section 3. All
the classes of constraints (geometric, ground reactions,
limited torque value of the actuators, constraint intro-
duced by the definition of the motion) are described in
this Section. The control strategy for both phases are
presented Section 4. The Poincaré method to study



stability is recalled in Section 5. We detail the calcu-
lus of the maximum modulus of the eigenvalues of the
linearized Poincaré map around the fixed point of the
periodic motion. All numerical tests are discussed Sec-
tion 6. Finally we offer our conclusion and perspectives
Section 7.

2 Biped presentation and model

Figure 1 presents a diagram of the studied biped. This
biped is only moving in the sagittal plan, composed
of 5 links (2 tibias, 2 femurs and the trunk), 4 actu-
ated joints (the 2 knees and the hips), and does not
have feet. We note Γ = [Γ1 Γ2 Γ3 Γ4]T the torque
vector, δ = [δ1 δ2 δ3 δ4]T the actuated joint variables,
q = [α δT ]T the joint variables with orientation of the
biped in space, and X = [qT , xt, yt]T the configura-
tion, orientation and position vector, where (xt, yt)
is the position of the center of gravity of the trunk.
Ri = [Rix Riy]T , (i = 1, 2) are the ground reaction
forces respectively on feet 1 and 2.
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Figure 1: Five link Biped’s diagram: Generalized Co-
ordinates, Torques and Forces Applied to the Leg Tips.

The dynamic model (1) of the biped is obtained from
Lagrange’s equations.

A(q)Ẍ + H(q, q̇) = DΓΓ + D1(q)R1 + D2(q)R2 (1)

A(7 × 7) is the symmetric positive definite inertia ma-
trix, H(7 × 1) represents the Coriolis, centrifugal and
gravity effects, DΓ(7 × 4) is a simple matrix composed
of 1 and 0, Di(7 × 2), (i = 1, 2) are jacobian matrices
linking extremities of feet and joints.
The biped is also subject to position constraints (2),
depending on whether feet are on the ground or not.

These constraints are also written with respect to ve-
locities and acceleration, by derivation of position con-
straints.{

di(X) = constant, Vi = Di(q)T Ẋ = 0
V̇i = Di(q)T Ẍ + Hi(q, q̇) = 0 i = 1, 2

(2)

di(X)(2×1) and Vi(2×1) are respectively the position
and velocity of the foot i.
The models for the single support phase, the double
support phase and the impact are restrictions obtained
from the general model presented here.
During the single support phase, one feet of the biped
is on the ground. Let us consider the case of the foot 1
on the ground and the foot 2 in the air. The model of
single support is then represented by dynamic model
(1) with no effort on foot 2, i.e. R2 = [0 0]T , and
constraint equations (2) for foot 1, i.e. i = 1. The
case for the foot 2 on the ground is similar. Let us note
that the biped is under actuated during this phase since
there are four actuators and five degrees of freedom.
During the double support phase, both feet are on the
ground. Then the model for the double support phase
is given by dynamic model (1) with constraint equa-
tions (2) for both feet, i.e. (i = 1, 2). Let us note that
the biped is over actuated during this phase since there
are three degrees of freedom and four actuators.
We design our nominal reference gait without impact.
However we need to take into account the impacts be-
cause they occur due to perturbations. The impact is
considered rigid, passive, instantaneous, with impulsive
ground reactions, and with a null restitution coefficient.
The model of impact (3) is then obtained from integra-
tion of dynamic model (1) between instants just before
impact and just after impact, see [8].

A(q)(Ẋ+ − Ẋ−) = D1(q)IR1 + D2(q)IR2 (3)

IR1 and IR2 are the impulsive ground reactions for both
feet. The notation − means just before impact and
+ means just after impact. Additional equations are
given by the contact laws. We suppose that the two feet
remain on the ground without moving after impact.

Di(q)T Ẋ+ = 0 i = 1, 2 (4)

Then the calculation of velocities after impact and im-
pulsive ground reactions are given by (5).


 Ẋ+

IR1

IR2


 = A−1

impact


 AẊ−

0
0


 (5)

where,

Aimpact =


 A −D1 −D2

DT
1 0 0

DT
2 0 0


 (6)



In simulation we consider that impact occurs when al-
titude of swing foot become zero.

3 Reference Motion Definition

We consider one periodic step composed of a double
support phase, a single support phase and an impact.
There is an infinite number of parameters to define ref-
erence motions. We have chosen to restrict the motion
definition to a finite number of parameters by taking
polynomials for the reference motion.
In single support, the biped is under actuated and we
will then define the trajectory of as much variables as
actuated joints. For control purposes it is easier to
define trajectories for the four actuated joints angles.
Due to the under actuation, we will also take these
joint variables as functions of ankle angle α. In spite
of under actuation, this allows to define all the con-
figurations during the walk. The speed at which all
these configurations are tracked in single support will
follow from the dynamic behavior of the biped. The
form of the four actuated joints as polynomials of α is
the following (i = 1, ..., 4):

δi,ss(α) = ai0 + ai1α + ai2α
2 + ai3α

3 + ai4α
4. (7)

In double support, due to the over actuation, we define
the motion of as much variables as degrees of freedom.
We firstly define α in order to directly tune during dou-
ble support the dynamics of this angle, as its dynamics
are not controlled in single support. α is defined as a
polynomial of time:

αds(t) = a0 + a1t + a2t
2 + a3t

3. (8)

For an homogenous definition with single support, we
define the motion of two other actuated joints as poly-
nomials of α (i = 1, 2):

δi,ds(α) = ai0 + ai1α + ai2α
2 + ai3α

3. (9)

The coefficients of the polynomials for a reference mo-
tion will be obtained by an optimization process. First
we consider the parameters that are the limit condi-
tions for each polynomial. We consider position and
velocity at the beginning and at the end of each phase
and an additional position during single support phase.
Then we reduce these parameters of the reference mo-
tion to a minimum set of parameters. This is due to
the fact that there are continuity conditions between
phases that link parameters of each phases. For our
walking motion we obtained 17 parameters for the op-
timization process, that are the initial and final joint
angles of double support for the controlled joints, the fi-
nal velocities of double support for the controlled joints,

the final velocities of single support for the controlled
joints, the intermediate configuration of single support,
and the step length.
The optimization criteria (10) is:

C =
1
d

Tstep∫
0

ΓT Γdt (10)

where d is the step size and Tstep the step duration.
During the walk, some constraints must be satisfied.
We can distinguish physical constraints and constraints
on the motion of the biped. Physical constraints (11)
include no take off and no sliding of the feet on the
ground as well as torque limits.{

Riy > 0, |Rix/Riy| < f i = 1, 2
−Γmax ≤ Γi ≤ Γmax i = 1, ..., 4 (11)

f is the friction coefficient between the feet and the
ground and Γmax is the torque limitation.
The constraints we considered on the motion are that
the trajectory of the free feet must be above a parabola
and that the trunk must be erected.
The optimization problem composed of the criteria (10)
and of the physical constraints (11) and the constraints
on the motion is non linear. It is solved by a sequential
quadratic programming method.

4 Control of the biped

The difficult aspects of the control of this biped are to
satisfy the physical constraints during the walk, even if
the reference motion satisfies them. Indeed, especially
during the double support phase, these constraints stay
close to the reference motion. Another difficult aspect
is to deal with the under actuation of the biped during
the single support phase. For this reason, in part 3 we
choose to express the reference motions in function of
the non actuated angle α instead of time, in order to
define all successive configurations of the biped. For
the control we will also use α instead of time so that
the convergence rate of the controlled joints will be
the same over one step, whatever the dynamics of α.
This can be done since the evolution of α is monotonic.
In the following parts, we will linearize the controlled
system by inverting the dynamics, write the physical
constraints in terms of the inputs and finally we will
present a PD based control law that takes into account
these constraints.

4.1 Input-Output Linearization of the Sys-
tem

For the actual biped model (1) the inputs are the
torques and the outputs are the positions and veloc-



ities. We will write the needed torques in terms of the
desired acceleration of the joint variables.
In single support the model (1) is written in terms of
the second derivatives in time of the joint variables. We
can firstly reduce the total acceleration vector Ẍ with
the contact constraint (2) in acceleration for the foot
on the ground.

Ẍ = Ax,ss(q)q̈ + Bx,ss(q) (12)

Ax,ss is a (7 × 5) matrix and Bx,ss is a (7 × 1) vector.
We control the four actuated joints with respect to α,
which is not controlled. Then we rewrite these joint
variable velocities and accelerations in terms of the first
and second derivatives in α of the joint variables.{

δ̇i =
∂δi

∂α
α̇, δ̈i =

∂2δi

∂α2
α̇2 +

δ̇i

α̇
α̈ i = 1, ..., 4 (13)

Finally we invert the dynamic model (1) considering
the relations (12) and (13). We obtain the following
expression that gives the torque Γ needed to obtain
some desired second derivative in α of the actuated

joint variables,
∂2δ

∂α2
.


 α̈

Γ
R1


 = Aint,ss(q, q̇)

∂2δ

∂α2
+ Bint,ss(q, q̇) (14)

Aint,ss is a (7×4) matrix and Bint,ss is a (7×1) vector.
This inversion also allows to calculate the ground reac-
tions R1 and the acceleration α̈ that will be obtained.
By feeding the torque computed with (14) in the dy-
namic model (1) we obtain a double integrator system

with inputs
∂2δ

∂α2
and outputs δ,

∂δ

∂α
, and some nonlin-

ear dynamics in α depending on
∂2δ

∂α2
,

∂δ

∂α
and δ.

In double support we follow the same steps as for the
linearization of the model in single support. The biped
has three degrees of freedom, due to the contact con-
straints (2) for both feet. We firstly express the total
vector Ẍ of acceleration with respect to the indepen-
dent accelerations, with the contact constraints (2) for
both feet.

Ẍ = Ax,ds(q)


 α̈

δ̈1

δ̈2


 + Bx,ds(q) (15)

Ax,ds is a (7 × 3) matrix and Bx,ds is a (7 × 1) vector.
We then express second derivatives in time with respect
to first and second derivatives in α. For the control of
α we will control the dynamics of α, i.e. α̇ and then α̈
is written in function of first derivative in α of α̇.

α̈ =
dα̇

dα
α̇ (16)

For δ1 and δ2 these relations are the same as for the
ones in single support phase (13) with i = 1, 2.
We now invert the dynamic model (1) considering the
double support relations (15), (16) and (13).


 Γ

R2y

R1


 = Aint,ds(q, q̇)




dα̇

dα

∂2δ1

∂α2

∂2δ2

∂α2

R2x




+Bint,ds(q, q̇) (17)

It appears that this inversion depends on another pa-
rameter than the desired derivatives in α, due to the
fact that the biped is over actuated. We choose R2x the
normal ground reaction of the foot 2 as this additional
parameter. R2x can be considered as a fourth input
of the linearized system. It will be determined by the
constraint control presented section 4.2. But if R2x is
not unique the one minimizing the torque norm will be
chosen.
By feeding the calculated torque Γ with (17) into the
biped represented by dynamic model (1) we obtain a

double integrator linear system with inputs
∂α̇

∂α
and

∂2δ1,2

∂α2
and with outputs δ1, δ2, α̇,

∂δ1

∂α
,

∂δ2

∂α
.

For the inversion of models in single support and double
support, we never observed any singularity, which can
be due to the fact that the reference motions obtained
by optimization are far from singularities.
In simulation the commutation from the control of sin-
gle support to the control of double support occurs
when the high of the swing foot become zero, but in ex-
periment it would be better to detect the ground force
peak of impact. The other control commutation occurs
when the desired final ankle angle of double support is
reached.

4.2 Constraints

Physical constraints can be rewritten in function of the
control inputs. Here are the original constraints (11)
rewritten with some margins.




Riy ≥ Riy,min, −Riy ≤ Rix

fmax
≤ Riy,

−Γmax ≤ Γj ≤ Γmax, i = 1, 2, j = 1...4

(18)

For the robustness margins, we have fmax < f ,
Riy,min > 0.



The inverse dynamic equation (14) gives a relation be-
tween ground reactions, torque and control inputs in
single support. The constraints of single support (in-
equalities (18) with ground constraints for only one
foot) are then rewritten linearly in terms of control in-
puts.

Ac,ss(q, q̇)
∂2δ

∂α2
≤ Bc,ss(q, q̇) (19)

Ac,ss is a (11×4) matrix and Bc,ss is a (11×1) vector.
Similarly, constraints of double support (18) are ob-
tained on control inputs using equation (17).

Ac,ds(q, q̇)




dα̇

dα

∂2δ1

∂α2

∂2δ2

∂α2

R2x




≤ Bc,ds(q, q̇) (20)

Ac,ds is a (14×4) matrix and Bc,ds is a (14×1) vector.

4.3 Control with Constraints

The principle of this control with constraints is to cal-
culate control inputs with a usual controller and then
to modify the less possible the control inputs in order
to satisfy the constraints, see [12].
At present, we will note r for the reference motion, d for
the desired motion, c for variables that allow to satisfy
constraints, and no indices for variables measured.
In single support phase a classical proportional and
derivative controller is used.

∂2δi,d

∂α2
=

∂2δi,r

∂α2
+ kv(

∂δi,r

∂α
− ∂δi

∂α
) + kp(δi,r − δi)

i = 1, ..., 4
(21)

We use the norm 2 for the problem of finding the closest
control input under constraints. We obtain the follow-
ing minimization problem.

min
∂2δdc

∂α2
∈IR4

∥∥∥∥∂2δdc

∂α2
− ∂2δd

∂α2

∥∥∥∥
2

Ac,ss
∂2δdc

∂α2
≤ Bc,ss

(22)

It is a quadratic optimization problem under linear con-
straints. The solution is then unique.
In double support phase we use a proportional con-
trol law for α since the corresponding linear system

obtained by linearization is of degree one, and a pro-
portional and derivative law for δ1 and δ2.


dα̇d

dα
=

dα̇r

dα
+ kpα(α̇r − α̇)

∂2δi,d

∂α2
=

∂2δi,r

∂α2
+ kv(

∂δi,r

∂α
− ∂δi

∂α
) + kp(δi,r − δi)

i = 1, 2
(23)

In double support the problem of control under linear
constraints is similar to the one in single support.

min
[aT

dc;R2x]T ∈IR4
‖adc − ad‖2

Ac,ds


 adc

R2x


 ≤ Bc,ds

(24)

with a =
[
dα̇

dα
,

∂2δ1

∂α2
,

∂2δ2

∂α2

]T

.

The coefficient of the PD and P control laws are tuned
in order to obtain a critical aperiodic behavior. The
controller is chosen in function of the bandwidth of the
mechanical portion of the joints which is approximately
12-Hz for RABBIT.

5 Poincaré Stability Study

The previous control strategy with constraints gives
rise to the question of stability with the constraints.
In fact, since the reference motion satisfies the con-
straints, there exist a small space around the reference
motion for which constraints are satisfied strictly. So
with the presented controller we have asymptotic con-
vergence locally around the reference motion for the
controlled degrees. But with the impact phenomenon
and the under actuation in single support stability is
not assured anymore. Poincaré method is here a way
to verify stability locally around reference motion. The
Poincaré method for periodic orbits consists in study-
ing the stability of the intersection of the motion with a
surface. We call Poincaré map the application that for
a given position of the intersection point in the surface
gives the next intersection point in the surface. A fixed
point of this function corresponds to a periodic motion
and it is stable if the maximum modulus of the eigen-
values of the linearized Poincaré map around the fixed
point is strictly less than one. In [7] these properties
have been generalized for systems with impulse effects,
like bipeds.
The stability of the system in closed loop will be simply
checked numerically, calculating the maximum modu-
lus of eigenvalues of linearized Poincaré map. To do



so we use the power method (see [9]) that allows to
calculate the eigenvalue of largest modulus and the as-
sociated eigenvector (called dominant eigenpair). For
our problem the power method is slightly different since
it combines together the linearization procedure with
the dominant eigenpair determination. This method is
numerically better than first calculate the linearization
of the Poincaré map and then calculate the eigenval-
ues. Let us note f : IRn → IRn the Poincaré map,
xp a fixed point of this function, and the function
g(∆x) = f(xp +∆x)−xp. The following recursive pro-
gram with initial value ∆x0 = ∆xmax, will converge to
the dominant eigenpair of the linearization of f around
the fixed point xp.




∆yk = g(∆xk)

∆xk+1 =
∆yk

ck+1

ck+1 = ‖∆yk‖∆xmax

(25)

where norm ‖.‖∆xmax
is defined by ‖∆yk‖∆xmax

=
∆yk,j

∆xmax,j
where j is the jth component of ∆yk satis-

fying
|∆yk,j |

∆xmax,j
= max

1≤i≤n

{ |∆yk,i|
∆xmax,i

}
(i is the ith com-

ponent of vector ∆yk). ∆xmax is the vector of max-
imal values that ∆xk can take so that Poincaré map
f can still be linearly approximated with a good pre-
cision around the fixed point. For this reason ∆xmax

must be sufficiently small but must not either be too
small to obtain a sufficient precision in the calculus of
the dominant eigenpair. In practice we will choose first
∆xmax to be in the linear domain of f and then we
will choose the precision of simulation to obtain a good
precision of calculus of eigenpair.
ck will converge to the dominant eigenvalue λmax and
∆xk will converge to the dominant eigenvector ∆xλmax

.
The rate of convergence becomes better with the de-
crease of the ratio of the second dominant eigenvalue
by the dominant eigenvalue.

6 Simulation results

The biped with the control law is simulated with Mat-
lab Simulink.
The surface we consider for the Poincaré study is the
instant of beginning of double support, just after the
impact. The state of the biped on this surface is de-
scribed by four configuration parameters αids, δ1,ids,
δ2,ids, d the distance between feet and three velocity
parameters α̇ids, δ̇1,ids, δ̇2,ids. We note ids for initial of
double support. The Poincaré map is then a function
from IR7 to IR7. The figures 2 4 and 3 present some
results about the dominant eigenvalue calculation.

We can see on figure 2 that convergence takes about six
iterations, which is very few. The obtained dominant
eigenvalue is λmax = 110−3, which is very small.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

c k

iteration k

Figure 2: Convergence of the absolute value of domi-
nant eigenvalue with power method.

The figures 3 and 4 allow to see if the vector ∆xmax

has been well chosen. The normalized dominant vector
corresponds to the abscissa of 1 and we can see that
it is in the linear part since the eigenvalues are con-
stant between 0 and 1 except when it tends to 0 where
the eigenvalues tend to infinity. This is due to numeri-
cal noise that increase when the norm of the eigenvec-
tor tends to 0. We choose a precision of simulation of
1 10−9, and we can see then that there is not so much
numerical noise for calculus of λmax.
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Figure 3: Graph of different eigenvalues λ =
‖g(a∆xλmax

)‖∆xmax

a
obtained by finite difference along

dominant vector, that is taking ∆x = a∆xλmax
.

The value of the dominant eigenvector is ∆xλmax
=

[2.5 10−3; −2.9 10−3; −4.4 10−4; 1.4 10−5; 6.9; −8;
−1.2]10−3. The major components are the ones of ve-
locity. This shows that there are only velocity errors af-
ter a double support phase and a single support phase.
This is due to the fact that the velocity α̇ is not con-
trolled during single support. Although the dynamics
of α are the slowest to convergence they are relatively
fast, since dominant eigenvalue is very small. This is
allowed by the over actuated double support phase.
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Figure 4: Poincaré map along the dominant vector
around the fixed point, that is taking ∆x = a∆xλmax

.

7 Conclusion

We described in this paper a numerical strategy to
study the orbital stability of a walking gait for a biped
without feet. The walking gait is composed of single
and double support phases and impacts. The control in
double support phase accelerates the convergence of the
reference trajectory to the fixed point in the Poincaré
map. This point corresponds to the periodic motion.
All the process of control is done satisfying the con-
straints. Numerical simulations show the feasibility of
the method. Our perspective is to use the control strat-
egy experimentally on the prototype RABBIT which is
the object of our study.
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