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Abstract This paper deals with a methodology to design optimal reference
trajectories for walking gaits. This methodology includes two steps : (i) to
design a parameterized family of motions, and (ii) to determine by optimiza-
tion the parameters that give the motion within this family that minimizes
a criterion and satisfies some constraints. This approach is applied to a five
link biped the prototype Rabbit. It has point feet and four actuators which
are located in each knee and haunch. Rabbit is under actuated in single sup-
port since it has no actuated feet and is over actuated in double support.
To take into account this under-actuation, a characteristic of the family of
motions considered is that the four actuated joints are prescribed as polyno-
mials in function of the absolute orientation of the stance ankle. There is no
impact. The chosen criterion is the integral of the square of torques. Differ-
ent technological and physical constraints are taken into account to obtain a
walking motion. Optimal process is solved considering an order of treatment
of constraints, according to their importance on the feasibility of the walking
gait. Numerical simulations of walking gaits are presented to illustrate this
methodology.

1 Introduction

For more than thirty years walking robots and particularly the bipeds have
been the object of researches. For example Vukobratovic and his co-author in
[1] have proposed in 1968 their famous Zero-Moment Point (ZMP), for the
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analysis of a biped gait with feet. In 1977, optimal trajectories [2] are designed
for a bipedal locomotion using a parametric optimization. Formal’sky in [3]
completely characterized the locomotion of anthropomorphic mechanisms in
1982. Sutherland and Raibert in the paper [4] proposed their principle about
virtual legs for walking robots in 1983. Currently Humanöıds such as Honda

biped in [5] and HRP2 biped in [6] (Humanöıd Robotics Project 2), which are
probably, on the technological point-of-view, the most advanced biped robots,
lead to many popular demonstrations of locomotion and interaction with their
environment. In parallel, some researchers, for legged robots with less degrees
of freedom, work with the control, the model and the reference trajectories
to design walking bipedal gaits more fluid. See for example [7] where a biped
with telescopic legs is studied, [8] where the famous dog Aibo from Sony is
used to design biped gaits, [9] where an intuitive approach is developed for
a biped locomotion or [10] where an accurate analysis of the gravity effects
is made to give necessary and sufficient conditions to ensure a cyclic walking
gait for a biped without feet.

In this paper, the efforts are focused on the design by a parametric opti-
mization of a walking gait. This approach necessitates two steps : (i) to design
a parameterized family of motions, and (ii) to determine by optimization the
parameters that give the motion within this family that minimizes a criterion
and satisfies some constraints. The motion obtained is later used as a refer-
ence motion. This approach is applied to a planar five-link biped without feet
and with four actuators only. The family of motions considered is composed
of a single-support phase and a double-support phase, with no impact. The
criterion minimized is the integral over the motion of the square of torques. It
is then a criterion of torque minimization. The originality of the present work
is double:

• To overcome the underactuated characteristic of the biped, the four vari-
ables defined as polynomials in single support are function of another
generalized coordinate, the absolute orientation at the stance leg ankle.
This allows to define the configurations of the biped during the single sup-
port phase, while the dynamics of the degree of freedom not controlled are
still not known. In double support, two actuated joints are also prescribed
in function of the absolute orientation at the stance leg ankle, which is a
polynomial function in time.

• There is a classification and a treatment of constraints according to their
importance on the feasibility of the walking gait.

This paper does not address the stability of the motion obtained. The
reader should refer to [11] which gives conditions of stability of the non con-
trolled degree of freedom during the single support phase, and also gives a
measure of this stability. It has been proved that the presence of the double
support phase practically guarantees the stability.

The article is organized as follows: the dynamical model of the biped under
interest is presented in Section 2 for the single-support phase and double-
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support phase. Section 3 is devoted to the definition of the family of reference
trajectories, their constraints and their parameters. The calculation of the
criterion in torque during the single support and the double support, and the
optimization process to determine the optimal parameters are presented in
Section 4. Some simulation results are shown Section 5. Section 6 contains
our conclusion and perspectives.

2 Dynamic model

2.1 Presentation of the biped and notations

A planar five-link biped is considered and is composed by a torso and two
identical legs with knee and point feet (see a diagram of the studied biped
Figure 1).
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Fig. 1. Biped in the sagittal plane.

There are four identical motors, which drive the haunches and the knees.
We note Γ = [Γ1, Γ2, Γ3, Γ4]

T the torque vector, q = [α, δT ]T =[α, δ1, δ2, δ3, δ4]
T

the vector composed of the orientation of the stance leg and the actuated joint
variables, and X = [qT , xt, yt]

T the vector of generalized coordinates. Com-
ponents (xt, yt) define the position of the center of gravity of the trunk.
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2.2 A reduced model

The optimization process to determined reference trajectories, which will be
presented in the next sections leads to many CPU operations. Then the strat-
egy was to use a reduced model that needs less computations. To obtain this
reduced model, we consider that the contact between the leg tip 1 and the
ground is acting as a pivot: there is no take off and no slipping of this leg tip
1. Then the biped configuration is described with vector q only. This model is
reduced by comparison to a more general model that would be written with
vector X. We obtain the reduced model by using Lagrange’s equations:

A(δ)q̈ + H(q, q̇) + Q(q) = DΓ Γ + D2(q)R2 (1)

where A(δ)(5×5) is the symmetric positive inertia matrix of the biped. As the
kinetic energy of the biped is invariant under a rotation of the world frame [12],
and viewed that α defines the orientation of the biped, the 5 × 5-symmetric
positive inertia matrix is independent of this variable, i.e. A = A(δ). Vector
H(q, q̇)(5 × 1) represents the centrifugal, Coriolis effects, and Q(q)(5 × 1) is
the gravity effects vector. DΓ (5 × 4) is a constant matrix composed of 1 and
0. D2(q) is the 5 × 2-Jacobian matrix converting the ground reaction in the
leg tip 2 into the corresponding joint torques.

Taking into account Coulomb dry and viscous frictions, Γ has the following
form

Γ = Γu − Γssign(DT
eΓ q̇) − FvDT

eΓ q̇ (2)

where Γs(4× 4) and Fv(4× 4) are diagonal matrices representing respectively
the dry friction and the viscous friction. Γu is the motors torque vector when
considering the joints friction.

In the case of double support, the point foot 2 is in contact with the ground.
Then the position variables q, the velocity variables q̇, and the acceleration
variables q̈ are constrained. In order to write these relations, we define the
position, velocity and acceleration of the point foot 2 in an absolute frame.
The position of the point foot 2 is noted d2(X). By differentiation of d2(X)
we obtain the relation between the velocity V2 = (V2x V2y)T of the point foot
2 and q̇,

V2 = De2(q)
T q̇ (3)

By another differentiation we obtain the relation between the acceleration
V̇2 = (V̇2x V̇2y)T of the point foot 2 and q̈,

V̇2 = De2(q)
T q̈ + Ḋe2(q)

T q̇ = De2(q)
T q̈ + Ce2(q, q̇) (4)

Then the contact constraints for the point foot 2 with the ground are given
by the three vector-matrix equations:























d2(X) = const

V2 = 0

V̇2 = 0

(5)
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These vector-matrix equations (5) mean that the position of the point foot 2
remains constant, and then the velocity and acceleration of the point foot 2
are null.

During the double-support phase, both legs are in contact with the ground.
Then the dynamic model is formed of both vector-matrix equations (1) and
(5). During the single-support phase on leg 1, the dynamic model is simply

written as (1) with the ground reaction for foot 2 in the air is R2 =
(

0 0
)T

.
Model (1) allows us to compute easier the torques and the dynamic model

of α (10). However, it is not possible to take into account a single-support on
the leg 2 with (1). Furthermore we cannot calculate the ground reaction with
model (1) only. We then add the two following equations, obtained from the
Newton’s second law at the center of mass G of the biped

{

MẍG = R1x + R2x

MÿG = R1y + R2y − Mg
(6)

where M is the mass of the biped and (xG, yG) are the coordinates of G.

3 Definition of the walk and its constraints

Our objective is to design a cyclic bipedal gait. There are two aspects for this
problem. The definition of a parameterized family of reference trajectories and
the method to determine a particular solution in this restricted space. This
section is devoted to the definition of the parameterized family of reference
trajectories. The optimal process to choose the best solution of parameters
from the point of view of a given criterion will be described in the next section.
The parameterized family of reference motions is such that one degree of
freedom, which changes monotonically during a step composed of a single-
support phases and a double-support phases, will be used as a variable to
define the other degrees of freedom. These special solutions lead to a particular
simple dynamical model of the biped in single support which can be calculated
from (1). An impactless bipedal gait is considered because, in [13] numerical
results proved that the insertion of an impact with this walking gait for the
studied biped is a very difficult challenge. The condition found to obtain no
impact was simply that the velocity of free foot must reach the ground with
null velocity. After the choice of parameters, the constraints will be detailed.
In the following, indices “ss” and “ds” respectively indicate the single-support
phase and the double-support phase.

3.1 Restrictions of motion considered in single support

During the single support, the biped has five degrees of freedom. With the
four actuators for the biped, only four output variables can be prescribed.
Then the biped is under actuated in single support. In previous experiments,
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see for example, [7, 14, 15], researchers observed that for most of walking
gaits of biped robots the ankle angle α of the stance leg changes absolutely
monotonically during the single-support phase. Therefore, it is possible to use
the angle variable, α instead of time t as an independent variable during the
single-support phase of the bipedal gait. As a consequence α, like time, will
have to be monotonic. But this choice will not eliminate potentially optimal
motions in the space in which we seek for solutions, since so far all motions
observed were satisfying this property. Thus the four joint variables δj are
prescribed as polynomial functions of this ankle angle, δj,ss(α) (j = 1, ..., 4).
The behavior of α is governed by the dynamic model (1). To deal with the
under actuation, the advantages of this approach is that the complete set of
configurations during the motion of the biped is defined and it is not necessary
to anticipate a duration for this single-support phase, which is the result of
the integration of (1). The order of these polynomial functions (7) is chosen at
four to specify initial, final and intermediate configurations, plus initial and
final joint velocity variables.

δj,ss(α) = aj0 + aj1α + aj2α
2 + aj3α

3 + aj4α
4 (7)

Let us note that it would be possible to prescribe other variables as Carte-
sian variable. In the goal to avoid the problems of singularity of the inverse
geometric model in the single-support phase, we prefer to work with angular
variables only. However some authors, for example [2, 16] use Cartesian co-
ordinates of the hip for the definition of the bipedal gait. The joint variables
are then prescribed. However since the biped is under actuated the evolution
of angle α must be such that the biped motion satisfies the dynamic model.
Considering relations (7) let us introduce for the variables q = q(α) of the
reference motion the following temporal derivatives

q̇(α, α̇) = q∗α̇

q̈(α, α̇, α̈) = q∗α̈ + q∗∗α̇2
(8)

where notation ()∗ means partial derivative with respect to α, and the (̇)
represent derivation with respect to time. Then we have q∗ = [1 δ∗1 δ∗2 δ∗3 δ∗4 ]T

and q∗∗ = [0 δ∗∗1 δ∗∗2 δ∗∗3 δ∗∗4 ]T . By calculating at the fixed point S (see Figure 1)
the angular momentum of the biped, we obtain the general form

σ =

4
∑

i=1

fi(δ1, δ2, δ3, δ4)δ̇i + f5(δ1, δ2, δ3, δ4)α̇ (9)

We can obtain two first order differential equations on σ and α (see [15])











σ̇ = −Mg (xG(α) − xS)

α̇ =
σ

f(α)

(10)
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M is the biped mass, g the acceleration of gravity, xG(α) and xS are respec-
tively the horizontal component of the positions of the biped’s mass center
and of the foot of the stance leg. The first equation of (10) comes from the
dynamic momentum equation at S when eliminating q from (7). The second
equation of (10) comes from (9) when eliminating q and q̇ with (7) and (8).
This differential system (10) is equivalent to the first line of (1). By identifica-
tion, it is possible to determine f(α) and xG(α) from (1). This simple model
(10) completely defines the dynamic behavior of the biped in single support
for the reference motion. From (10) we can deduce that (see [17])

σ̇ =
dσ

dα
α̇ =

dσ

dα

σ

f(α)
=

1

2

dσ2

dα

1

f(α)
= −Mg (xG(α) − xS)

Finally this calculation leads to the relation due to [17]:

dσ2

dα
= −2Mg (xG(α) − xS) f(α) (11)

If α is strictly monotone, the integration of (11) gives

σ2 − σ2
iss = −2Mg

∫ α

αiss

(xG(s) − xS) f(s)ds (12)

where σiss is the angular momentum at the beginning of single support charac-
terized by the initial value αiss. Then the dynamics of the biped are completely
defined from (10) in function of Φ(α) = σ2 − σ2

iss = α̇2f2(α) − α̇2
iSSf2(αiSS)

such as

α̇ = −

√

Φ(α) + f(αiSS)2α̇2
iSS

f(α)
(13)

α̈ is obtained from the second equation of (10)

α̈ =
σ̇f(α) − σḟ(α)

f2(α)
= −

Mg (xG(α) − xS) + df(α)
dα

α̇2

f(α)
(14)

From the solution of the differential equation in α (11) and using relations
(13) and (14) the numerical simulation to find the optimal motion and the
calculation of constraints will be easier.

The authors of [17] showed that system (10) behave like an inverted pen-
dulum. Therefore the only non-monotone behavior possible would be that the
biped fall back if the initial velocity of single support is not sufficient. The
condition to ensure the monotony of α has been added as a constraint in the
optimization process, see (18).

3.2 Restrictions of motion considered in double support

In double support, the biped has three degrees of freedom. With its four actu-
ators, the biped is over actuated. Then the motion of the biped is completely
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defined, with three prescribed degrees of freedom. For a question of conve-
nience for the use of the inverse geometric model, the ankle angle, α and both
joint variables, δj , (j = 1, 2) are prescribed. A polynomial function in time of
third-order (15) is chosen to define α. In a concern to be homogeneous with
the single support phase we define both joint angular variables δj , as polyno-
mial functions of third-order in α. Then initial and final configurations, and
initial and final velocities can be defined for these three prescribed variables.
The duration of the double-support phase is a parameter.







α(t) = a0 + a1t + a2t
2 + a3t

3

δj(α) = aj0 + aj1α + aj2α
2 + aj3α

3
(15)

It should be noted that there is no differential equations needed for the
definition of the motion, since the biped is over-actuated in double support.

3.3 Optimization Parameters

A boundary value problem has to be solved to design this cyclic bipedal
gait with successive single and double-support phases. This boundary value
problem depends on parameters to prescribe the initial and final conditions
for each phase. Taking into account the conditions of continuity between the
phases and the conditions of cyclic motion we will enumerate now in detail
on a half step k (a half step is considered as a single support and a double
support) the minimal number of parameters which are necessary to solve this
boundary value problem.

1. Seven parameters are needed to define the initial and final configurations
in double support. Then the parameters αids, δ1,ids, θids, αfds, δ1,fds, θfds

and d, the distance between both tips of stance legs in double support are
chosen. The use of the absolute orientation of the trunk, θ (see Figure 2)
instead of δ2,fds is easier and does not change the problem.

2. Time, Tds of the double support is given as a parameter.
3. The initial velocity of the biped in single support is prescribed by only

three parameters, α̇iss, δ∗1,iss, δ∗2,iss. The velocities δ∗3,iss and δ∗4,issare de-
duced taking into account the null velocity of the leg tip which takes off.

4. The final velocity of the biped in single support is prescribed by only
three parameters, α̇fss, δ∗1,fss, δ∗2,fss. The velocities δ∗3,fss and δ∗4,fss are
deduced taking into account the absence of impact of the swing leg tip on
the ground, which is equivalent to a null velocity of this tip.

5. With the chosen order for the polynomial functions (7) (fourth order) it
is necessary to specify five conditions for each function δj,ss, j = 1, ..., 4.
Then the fifth coefficient is calculated by defining an intermediate config-
uration. Let intermediate configuration in single support be determined
with the five following parameters, αint, δ1,int, θint and the coordinates
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(xp,int and yp,int) of the swing leg tip. Angle αint is fixed equal to
αiss + αfss

2
.

R R

R
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B
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d
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22
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2xx xx

y

y1

1

Fig. 2. Biped in the sagittal plane (Point G is the center of mass of the biped).

Then finally the vector of parameters has eighteen coordinates

p = [Tds, αids, δ1,ids, θids, αfds, δ1,fds, θfds, d, α̇iss, δ
∗

1,iss, ...

δ∗2,iss, αfss, δ
∗

1,fss, δ
∗

2,fss, δ1,int, θint, xp,int, yp,int]

3.4 Constraints

Constraints have to be considered to design nominal gait. We will present
them according to their importance on the feasibility of the walking gait.

• Firstly, no motion is possible if distance d(A,B) between the tip of leg 2
and the hip joint, for initial and final configurations of the double support
and the intermediate configuration of the single support, is such that

d(A,B) > 2 × l (16)
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where l is the common length of the femur and the tibia. In other words,
there is no solution with the geometrical model to compute δ3 and δ4.

• Constraint (16) is also taken into account during the motion of the biped
in double support. The maximum value of d(A,B) in function of α is
considered.

• The mechanical stops of joints for initial, intermediate and final configu-
rations of each phase and during the motion are







































−260◦ < (δ2)min (δ2)max < −110◦

−260◦ < (δ2 − δ3)min (δ2 − δ3)max < −110◦

−230◦ < (δ1)min (δ1)max < −127◦

−230◦ < (δ4)min (δ4)max < −127◦

The notation ()max and ()min stands respectively for the maximum and
minimum value over one step.

• In double support the monotony condition for variable α is imposed

max
t∈[0,Tds]

α̇(t) < 0 (17)

• In single support, the monotony condition for variable α is imposed by the
inequality

Φmin + f(αiss)
2α̇2

iss > 0 (18)

where Φmin = minα∈[αiss,αfss] Φ(α)
• In single support it is fundamental to avoid singularity f(α) = 0 to simu-

late one step. Then we define the following constraint

min
α∈[αiss,αfss]

f(α) > 0 (19)

Now the following constraints can be violated during the optimization process
to simulate a half step. However they are important for experimental objec-
tives. The optimization process will ensure their verification.

• Each actuator has physical limits such that










































(

|Γ ∗

1 (α)| − Γmax(|δ̇1|)
)

max
< 0

(

|Γ ∗

2 (α)| − Γmax(|δ̇2|)
)

max
< 0

(

|Γ ∗

3 (α)| − Γmax(|δ̇2 − δ̇3|)
)

max
< 0

(

|Γ ∗

4 (α)| − Γmax(|δ̇4|)
)

max
< 0

(20)

The notation ()max stands for the maximum value over one step. Function
Γmax(∗) can be deduced from a template, torque actuator/velocity, given
by the actuator manufacturer.
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• We must take into account constraints on the ground reaction Rj =
(

Rjx Rjy

)T
in the tip of the stance leg j, j = 1 in single support and

j = 1, 2 in double support. The ground reaction must be inside a friction
cone defined by the friction coefficient µ. This is equivalent to write both
inequalities

Rjx − µRjy < 0

−Rjx − µRjy < 0

By summing these two inequalities, the condition of no take off is deduced:

⇒ Rjy > 0. (21)

• There is also a constraint on the swing leg tip to avoid an impact with
the ground during its transfer. This constraint is defined by a parabola
function

min
α∈[αiss,αfss]

[

y(α) −

(

x2(α)

d2
− 1

)

ymax

]

> 0

where (x, y) are the coordinates of the swing leg tip and ymax is the max-
imum height of the parabola.

• Optimal motions are defined for different velocities with the constraint

d = v(Tss + Tds) (22)

where d is the distance between the tips of stance legs see Figure 2), v
is the desired average velocity of the biped, Tss is the time of the single-
support phase. The calculation of time Tss of the single-support phase is

given by Tss =

∫ αfss

αiss

1

α̇
dα

4 Optimal walk

Many values of parameters presented Section 3 can give a periodic bipedal
gait satisfying constraints (16)-(22).

Then a parametric optimization process, minimizing a criterion under non-
linear constraints, is possible to find a particular nominal motion. Let us define
this optimization process

min
p

C(p) (23)

gi(p) ≤ 0 i = 1, 2, ..., n

where p is the vector of parameters, C(p) is the criterion to minimize with n
constraints gi(p) ≤ 0 to satisfy. We give now some details about the way to
calculate the criterion during the single-support phase and the double-support
phase, and about the optimization process.
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4.1 Criterion

To find the nominal motion, criterion CΓ , which is a torque minimizing cri-
terion, is considered

CΓ =
1

d

∫ Tss+Tds

0

ΓT Γdt =
1

d

(

∫ αfss

αiss

ΓT Γ

α̇
dµ +

∫ Tds

0

ΓT Γdt

)

(24)

where Tss and Tds are the times of single support and double support. Usually
for electrical motors such as DC motors, the torque is proportional to the
induced current. Then criterion CΓ represents the losses by Joule effects to
cover distance d, see [18, 19]. To consider an energy minimizing criterion, it
would only be necessary to add the losses by friction in the joints.

4.2 Single-support phase

From calculation of the integral term (12) using the polynomial functions (7),
we obtain Φ(α) = σ2 − σ2

iss. Velocity α̇ and acceleration α̈ can be obtained
with relations (13) and (14). We then have determined the dynamics of the
under actuated biped in single support for a reference trajectory. The torques
are determined from the four last equations of (1)

A25(δ)q̈ + H25(q, q̇) + Q25(q) = DΓ25Γ (25)

where A25(4 × 5), H25(4 × 5) and DΓ25(4 × 4) are the submatrices of A, H
and DΓ , Q25(4× 1) is the subvector of Q. The invertible matrix DΓ25 allows
to determine the torque vector Γ . The ground reaction Ri = (Rix, Riy) at the
tip of the stance leg i are calculated using equations (6).

4.3 Double-support phase

From relations (15) first, at each step time α(t), α̇(t) and α̈(t) are calculated
as polynomial functions of time, then δj(α), δ̇j(α) and δ̈j(α) (j = 1, 2) are
determined. There are an infinity of solutions for the torques to realize the
double support, because the biped is over actuated. Only three generalized
coordinates, for example α(t), δ1 and δ2, are necessary to describe the motion
completely. Then, we can parameterize the solution of torques in function of
a variable. To find this variable we consider equation (6) and the equation of
the angular momentum theorem applied at the leg tip 1. This equation of the
angular momentum theorem in double support is equivalent to the equation
(10) but with the effect of ground reaction force of foot 2. It is also equivalent
to the first line of model (1). This additional equation is then

A1(δ)q̈ + H1(q, q̇) + Q1(q) = −dR2y (26)

where A1(1 × 5) and H1(1 × 5) are the first line of A and H, Q1(1 × 1) is
the first element of Q. Term d is the distance between the two leg tips on the
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ground. Component R2x does not appear in equation (26) because the ground
is assumed to be horizontal and plane. From second line of (6) and (26), for
a given acceleration of the biped there is only one solution for R1y and R2y,
independently of the torques. The torques have an influence only on R1x and
R2x. For this reason, a solution for the torques can be found in function of R1x

or R2x as parameter. Let us choose R2x and define the minimization problem
with the associated constraint on component R2x

min
R2x

Γ ∗T Γ ∗















−µR1y − R1x ≤ 0
−µR1y + R1x ≤ 0
−µR2y − R2x ≤ 0
−µR2y + R2x ≤ 0

(27)

The choice of the particular solution of this optimization problem is because
it is also the solution that minimizes the criteria (24). With the four last lines
of the vector-matrix equations (1) and (2) a relation between torques Γ ∗ and
R2x can be written

Γ ∗ = J − KR2x (28)

with K = D−1
Γ25D2x 25 and

J = D−1
Γ25 (A25q̈ + H25(q, q̇) + Q25(q) − D2y 25R2y) +Γssign(DT

Γ q̇) + FvD
T
Γ q̇.

The solution R2x optΓ to minimize the square of the torques without con-

straint is given when Γ ∗T ∂Γ∗

∂R2x
= 0. Considering equation (28) R2x optΓ is

given by

R2x optΓ =
KT J

KT K
(29)

defining a minimum value R2xinf and a maximum value R2xsup, the con-
straints on R2x can be written under the simple form,

R2xinf ≤ R2x ≤ R2xsup (30)

Then a solution for the minimization problem (27) is given by three cases

• if R2x inf ≤ R2x optΓ ≤ R2x sup then R2x = R2x optΓ ,

• if R2x optΓ ≤ R2x inf then R2x = R2x inf ,

• if R2x sup ≤ R2x optΓ then R2x = R2x sup.

In the case where there is no solution, i.e R2xinf ≥ R2xsup, we choose R2x to
minimize the violation of constraints such as
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R2x =
R2x inf + R2x sup

2

In this last situation, the constraints are not satisfied. However, the optimiza-
tion process will tend to satisfy the constraints of the motion, and the final
solution will always satisfy R2xinf ≤ R2xsup. This violation will only occur
during the optimization process.

4.4 Optimization algorithm

The algorithm NPSOL, see [20] is used to solve this optimization problem
with its nonlinear constraints. The sequence of treatment of constraints ac-
cording to their importance is described Figure 3. From level 0 to level 4, the
constraints must be satisfied to simulate one step. Other constraints as the
maximum velocity of the biped, the torques limits are considered in level 5.
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a

support

Satisfied
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Fig. 3. Sequence of constraints to satisfy before the step can be defined

Sometimes, while solving problem (23), the optimization process can ask
a value of the criterion or the constraints in a point p0 where they are not de-
fined. Another point pM , the closest from p0 is searched for by an intermediate
optimization process. For example if constraints gi(p0) ≤ 0, i = 1, 2, ...,m0

are not satisfied, pM is determined as the solution of the problem

min
p

‖p0 − p‖

gi(p) ≤ 0 i = 1, 2, ...,m0

(31)
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Then the constraints not defined at the point p0 will be computed at the
point pM . And using gradient information at pM , an interpolated value will be
determined at p0. This interpolation ensures that constraints and criteria are
continuous and differentiable functions, even at the boundary of their space
of definition. This is a necessary condition for the optimization program to
solve this modified problem.

During the optimization process, the constraints can be violated. But it
tends to satisfy the constraints at the end of the optimization. Since we add
in the problem the constraints specifying the sub-space where all constraints
and criterion are defined, at the end of the optimization the walking motion
will be defined and satisfy all the constraints. The only situation where the
algorithm could not find a solution that satisfies constraints is if there is
no such solution (if we ask for a walk too fast and the actuators are not
sufficient to do it, for example) or if the problem is not convex. Indeed the
algorithm used is a local optimization algorithm. For a non convex problem,
it will probably find an only local non feasible solution, whereas other feasible
solution exists. However, we have tried many random initial conditions for
the optimization process and always found the same optimal solution that
satisfied constraints. We can then assume that our problem is convex.

To solve this intermediate optimization problem (31) and the general opti-
mization problem (23), the gradient in function of the vector of parameters p
of the criterion and constraints is necessary. To obtain an efficient algorithm,
these gradients were analytically calculated.

5 Simulation results

Figures 4-7 are devoted to a chosen motion velocity for a biped which equals
0.3 m/s. Figure 4 shows that the needed torques for this trajectory are inside
the template, motor torque/velocity, given by the manufacturer.
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Fig. 4. Velocity versus torque for knee i and haunch i, (i = 1, 2) are inside the
template, motor torque/velocity, defined by the limit values 140 N.m and 12 rad/s.

The normal components of the ground reactions in function of time, during
one step are presented Figure 5. The constraint of unilateral contact on the
leg tip 2 is active because the fixed limit 20 N is reached in the tip of leg 2
during the double-support phase. The double-support phase begins after time
0.93 s.
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Fig. 5. Normal components in the stance leg tips.

Figure 6 shows in function of time, the evolutions of joint variables δ1, δ2, δ3

and δ4 in single-support phase and double-support phase. Let us remark that
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the discontinuities in the graphes mark the limit between the single-support
phase and the double-support phase. These discontinuities are not due to an
impact (only an impactless motion is considered). These discontinuities appear
in the graphes of Figures 5-7 because the role of both legs are exchanged at
the beginning of the double-support phase.
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Fig. 6. Evolution of joint variables δ1, δ2, δ3 et δ4.

Figure 7, the behavior of the variable α is monotone as expected. The
discontinuity at the end of the single-support phase (time 0.93 s) is due to
the exchange of the role of both legs.
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Fig. 7. Evolution of α in function of time.

In conclusion, for this velocity 0.3 m/s of the biped an optimal motion is
feasible according to the constraints. Other velocities of walk for the biped
have been tested with success. Figure 8, discrete values of criterion CΓ are
presented versus velocity of motion. The evolution of discrete criterion CΓ

versus velocity of motion is more regular if the optimal walks are obtained
without to take into account Coulomb friction. This is due to the fact that
the convergence for the case with friction is not very good, since torques are
not smooth. For superior velocities a running gait is more appropriate, (see
for example numerical experiments in the paper [18]).
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Fig. 8. CΓ in function of several motion velocities for the biped.

6 Conclusion

An optimization process is proposed to design optimal bipedal gaits for a
five-link biped. The walking gaits are composed of single-support phases and
double-support phases, but with no impact. The criterion minimized is the
integral of the square of the torques. A sequential procedure is done, taking
into account the constraints according to their importance to realize a walk
step. Coulomb frictions, which are nonlinear and discontinuous functions, are
taken into account because their contribution cannot be neglected. A pos-
sible improvement would be to do a piecewise linear approximation of the
Coulomb friction, around the discontinuity point of the friction force for a
null joint velocity. Currently the main drawback of the optimization method
we used is that it is not exactly adapted to our problem. Our problem is a
semi-infinite problem, that is an optimization problem with constraints that
must be satisfied over an interval. We have then adapted our problem by con-
sidering the constraints over an interval only at their most constraining point.
The optimization problem we then solve is with non-smooth constraints. But
we obtained convergence even if NPSOL was not designed to cope with such
non-smooth problems. To solve our problem, we would like in the future to
consider an optimization algorithm that can take into account a variable num-
ber of constraints. Indeed, the number of maximum and minimum where we
considered the semi-infinite constraints can change during the optimization
process. We hope also to experiment on prototype Rabbit these reference tra-
jectories and to extend also this work to a walking biped with more degrees
of freedom.
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