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Abstract This paper deals with a methodology, to design optimal reference
trajectories for walking gaits of a five link biped, the prototype Rabbit. It has
point feet and four actuators in each knee and haunch. Rabbit is underactu-
ated in single support since it has no actuated feet and is overactuated in
double support. To take into account this characteristic of under-actuation,
the reference trajectories for the four actuated joints are prescribed as poly-
nomial in function of the absolute orientation of the stance ankle. There is no
impact. The chosen criterion is the integral of the norm 2 of the torques. Dif-
ferent technological and physical constraints are taken into account to obtain
a walking such as, the limits of torques, the strictly monotone evolution in
time of the absolute orientation of the stance ankle, the existence conditions of
solutions of the inverted geometrical model in double support, the unilateral
constraints with the ground in the stance leg tips. The optimal process are
solved, considering an order of treatment of constraints, according to their
importance on the feasibility of the walking gait. Numerical simulations of
walking gaits are presented to illustrate this methodology.

1 Introduction

For more than thirty years walking robots and particularly the bipeds have
been the object of researches. For example Vukobratovic and co-author in [1]
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have proposed in 1968 his famous Zero-Moment Point (ZMP), for the analy-
sis of a biped gait with feet. In 1977, optimal trajectories [2] are designed
for a bipedal locomotion using a parametric optimization. Formal’sky in [3]
completely characterized the locomotion of anthropomorphic mechanisms in
1982. Sutherland and Raibert in the paper [4] proposed their principle about
virtual legs for walking robots in 1983. Currently Humanoids such as Honda
biped in [5] and HRP2 biped in [6] (Humanoid Robotics Project 2), which are
probably, on the technological point-of-view, the most advanced biped robots,
lead to many popular demonstrations of locomotion and interaction with their
environnement. In parallel, some researchers, for legged robots with less de-
grees of freedom, work with the control, the model, the reference trajectories
to design walking bipedal gaits more fluid ounce, see for examples [7] where a
biped with telescopic legs is studied, [8] where the famous dog Aibo from Sony
is used to design biped gaits, [9] where an intuitive approach is developed for
a biped locomotion or [10] where an accurate analysis of the gravity effects
is made to give necessary and sufficient conditions to ensure a cyclic walking
gait for a biped without feet.

In this paper, the efforts are focused on the design by a parametric opti-
mization of an impactless gait for a planar five-link biped without feet and
with four actuators only. This gait is composed of a single support phase and
a double-support phase. The originality of the present work is double:

e The four prescribed variables in single support, to overcome the under-
actuated characteristic of the biped, are function of another generalized
coordinate, the absolute orientation at the stance leg ankle. In double
support, two actuated joints are prescribed in function of « which is a
polynomial function in time.

e There is a classification and a treatment of constraints according to their
importance on the feasibility of the walking gait.

The article is organized as follows: the dynamical model of the biped under
interest is presented in Section 2 for the single-support phase and double-
support phase. Section 3 is devoted to the definition of the reference trajec-
tories, their constraints and their parameters. The design of the optimal gaits
with the calculation of the criterion in torque in single support and double
support is detailed in Section 4. Some simulation results are shown Section 5.
Section 6 contains our conclusion and perspectives.

2 Dynamic model
A planar five-link biped is considered and is composed by a torso and two

identical legs with knee and point feet (see a diagram of the studied biped
Figure 1).
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Fig. 1. Biped in the sagittal plane.

There are four identical motors, which drive the haunches and the knees.
We note I' = [I', I, I's, I4]T the torque vector, ¢ = [, 67 |7 =[a, 81, 62, 03, 64]T
the vector composed of the orientation of the stance leg and the actuated joint
variables, and X = [q7, 24, 1:]7 the vector of generalized coordinates. Com-
ponents (x4, ;) fixe the position of the center of gravity of the trunk.

2.1 General model

The dynamic model is determined from Lagrange’s equations and is given by
Ac(q)X + He(q,d) = Der I + De1(q) Ry + Dea(q) Ro. (1)

The inertia matrix A.(7 x 7) of the biped is symmetric and positive definite.
The centrifugal, Coriolis and gravity effects are represented by vector H.(7 x
1). The torque vector matrix I" is taken into account by the fixed matrix
D.r(7 x 4), consisting of zeros and units. D.;(g) is the 7 x 2-Jacobian matrix
converting the ground reactions in the leg tip j into the corresponding joint
torques, (j = 1,2). If the point foot j is in the air, then R; = (0 O)T. To take
into account of Coulomb dry and viscous frictions, I" can be written

I' =TI — Isign(D%.4) — F,DT.4 (2)

where I's(4 x 4) and F, (4 x 4) are diagonal matrices. If the point foot j is
in contact with the ground, the position variables X, the velocity variables
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X , and the acceleration variables X are constrained. In order to write these
relations, we define the position, velocity and acceleration of the point foot
J in an absolute frame. The position of the point foot j is noted d;(X). By
differentiation of d;(X) we obtain the relation between the velocity V; =
(Vja Vj,)T of the point foot j and X,

Vi =D.(q)"X (j=12) (3)

By another differentiation we obtain the relation between the acceleration
V; = (Vja Vjyy)T of the point foot j and X,

Vi =Dej(@)" X + Cej(a,4) (=1,2) (4)

Then the contact constraints for the point foot j with the ground are given
by the three vector-matrix equations:

d;(X) = const

Vi=0 (=12 ()
V=0
These vector-matrix equations (5) mean that the position of the point foot j
remains constant, and then the velocity and acceleration of the point foot j
are null. During the double-support phase, both legs are in contact with the
ground. Then the dynamic model is formed of both vector-matrix equations,
(1) and (5) for j =1, 2.

2.2 A reduced model

Let us assume that the contact between the leg tip 1 and the ground is acting
as a pivot: there is no take off and no slipping of this leg tip 1. Then the biped
configuration can be described with vector ¢ only. Using Lagrange’s equations
a new dynamic model is deduced

A(0)§+ H(q,q) + G(q) = DrI'+ Da(q) Ry (6)

where A(9)(5x 5) is the symmetric positive inertia matrix of the biped. As the
kinetic energy of the biped is invariant under a rotation of the world frame [11],
and viewed that ¢ defines the orientation of the biped, the 5 x 5-symmetric
positive inertia matrix is independent of this variable, i.e. A = A(J). Vector
H(gq,q)(5 x 1) represents the centrifugal, Coriolis effects, and G(q)(5 x 1) is
the gravity effects vector. D (5 x 4) is a constant matrix composed of 1 and 0.
D5(q) is the 5 x 2-Jacobian matrix converting the ground reaction in the leg
tip 2 into the corresponding joint torques. In single support phase on the leg
1, the ground reaction for foot 2 in air is Ry = (0 O)T. Model (6) allows us to
compute easier the control law. However, it is not possible to take into account
a single support on the leg 2 with (6). Furthermore we cannot calculate the
ground reaction with model (6) only.
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2.3 Passive impact model

During the bipedal gait, the impact occurs at the end of a single support phase,
when the swing leg tip touches the ground at a time ¢ = T'. We assume that this
impact is instantaneous, passive, absolutely inelastic. Given these conditions,
the ground reactions can be considered impulsive forces and defined by Dirac
delta-functions R; = Ig,A(t —T) (j = 1,2). Here, Ir, = (Ig,, IRjy)T,
is the vector of the magnitudes of the impulsive reaction in the leg tip j,
see [3]. Impact equations can be obtained through integration of the matrix
motion equation (1) for the infinitesimal time from 7' — 0 to T 4 0 at each
instantaneous impact. The torques supplied by the actuators at the joints,
Coriolis and gravity forces have a finite value, thus they do not influence an
impact. Consequently the impact equations can be written in the following
matrix form:

Ac(q) (X* = X7) = Dar(@) s, + Deala) I, ™)

The notation + (resp. —) means just after (resp. before) impact.

After an impact several behaviors of the biped are possible. We consider
here that both feet remain fixed on the ground, since we are interested in
a gait for which a double-support phase is obtained after impact. In this
case the passive impact equation (7) must be completed by the two following
vector-matrix equations.

Vit = Deyl)"X* =0 (j = 1,2) (8)

The passive impact model composed of (7) and (8) allows to compute the
seven components of the velocity vector X+ and the two impulsive components
of each ground reactions I, (j = 1,2) from the five components of vector ¢
and the seven components of the velocity vector just before impact, X,

The constraints, that must be satisfied to obtain after impact that both
feet remain fixed on the ground, will be presented in the next Section 3.

In conclusion, the structure of the dynamical model of the biped changes
in function of the different phases of the gait.

3 Definition of the walk and its constraints

Our objective is to design a cyclic bipedal gait. We begin with the presenta-
tion of the reference motions in single-support phase and in double-support
phase. An impactless bipedal gait is considered because, in [12] numerical re-
sults proved that the insertion of an impact with this walking gait for the
studied biped is a very difficult challenge. After the choice of parameters, the
constraints will be detailed. In the following indices “ss” and “ds” respectively
indicate the single-support phase and the double-support phase.
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3.1 Reference motion in single support

During the single support, the biped has five degrees of freedom. With the four
actuators for the biped, only four output variables can be prescribed. Then
the biped is underactuated in single support. In previous experiments, see for
example, [7, 13, 14] the ankle angle a of the stance leg changes absolutely
monotonically during the single-support phase. Therefore, it is possible to use
the angle variable, « instead of time t as an independent variable during the
single-support phase of the bipedal gait. Thus to overcome the underactuated
property of the biped in single support the four joint variables d; are prescribed
as polynomial functions of this ankle angle, d, ss(cv) (j = 1, ...,4). The behavior
of av is governed by the dynamic model (6). The complete set of configurations
during the motion of the biped is defined by this way and it is not necessary
to anticipate a duration for this single-support phase, which is the result of
the integration of (6). The order of this polynomial functions (9) is fixed at
four to specify initial, final and intermediate configurations, plus initial and
final joint velocity variables.

(5j)35<a) = ajo + a1 + ajgon + aj3a3 + CL]‘4044 (9)

Let us note that it would be possible to prescribe other variables as Carte-
sian variable. In the goal to avoid the problems of singularity of the inverse
geometric model in the single support phase, we prefer to work with angular
variables only. However some authors, for example [2, 15] use Cartesian co-
ordinates of the hip for the definition of the bipedal gait. The joint variables
are then prescribed. However since the biped is underactuated the evolution
of angle o must be such that the biped motion satisfies the dynamic model.
Let us introduce
Q(a’ d) =q"a
(10)
q.(a7 @, a) =q'a+ q**dZ

where notation ()* means partial derivative in «. Then we have ¢* =
[167 6505 05] and ¢** = [067* 65* 55* 65*]. With relations (9) and (10) a re-
duced dynamic model of the biped can be described as (see [14])

6=—-Mg(za(a) —xg)
(11)

. g
o= —(————

fla)
M is the biped mass, g the acceleration of gravity, ¢ («) and zg are respec-
tively the horizontal component of the positions of the biped’s mass center

and of the foot of the stance leg. ¢ is the angular momentum around S.
Chevallereau et al. [16] have shown from (11) that

do?

To = Mg (za(a) —zs) f(a) (12)
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If « is strictly monotone, the integration of (12) gives

(63

0% — o2, = —2Mg / (x6(s) — ws) f(s)ds (13)

iss

where ;4 is the angular momentum at the beginning of single support charac-
terized by the initial value «;s5. Then the dynamics of the biped are completely
defined from (11) in function of @(a) = 0% — o2, such as
7 22
d —— \/ (O[) + f(aZSS) a’LSS (14)
fle)

 Mgag(a) + L a?
f(@)

From the solution of the differential equation in « (12) and using relations

(14) and (15) the numerical simulation to find the optimal motion and the

calculation of constraints will be easier. Those relations will also allow us to
write the conditions of existence of a motion in «, see (19).

(15)

3.2 Reference motion in double support

In double support, the biped has three degrees of freedom. With its four actu-
ators, the biped is overactuated. Then the motion of the biped is completely
defined, with three prescribed degrees of freedom. For a question of conve-
nience for the use of the inverse geometric model, the ankle angle, @ and both
joint variables, ¢;, (j = 1,2) are prescribed. A polynomial function in time of
third-order (16) is chosen to define a. In a concern to be homogeneous with
the single support phase we define both joint angular variables d;, as polyno-
mial functions of third-order in «. Then initial and final configurations, and
initial and final velocities can be defined for these three prescribed variables.
The duration of the double support phase is determined a priori.

a(t) = ag + art + ast® + ast?
(16)

5j (a) = ajo + a1 + CLJ‘QO(Q + ajgoz?’

3.3 Optimization Parameters

A boundary value problem has to be solved to design this cyclic bipedal
gait with successive single and double support phases. This boundary value
problem depends on parameters to prescribe the initial and final conditions
for each phase. Tacking into account the conditions of continuity between the
phases and the conditions of cyclic motion we will enumerate now in details
on a half step k£ the minimal number of parameters which are necessary to
solve this boundary value problem.
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. Seven parameters are needed to define the initial and final configurations

in double support. Then the parameters as, 01,ids, Oids, Xrds, O1,fds,
0¢q4s and d, the distance between both tips of the stance legs in double
support are chosen. The use of the absolute orientation of the trunk, 6
(see Figure(2) instead 02, 45 is easier and does not change the problem.

. Time, Ty, of the double support is given as parameter.
. The initial velocity of the biped in single support is prescribed by only

three parameters, ss, 07 ;450 05 ;55- The velocities 03 ;.. and 0} ;, are de-

duced taking into account the null velocity of the leg tip which takes off.

. The final velocity of the biped in single support is prescribed by only

three parameters, dfss, 07t 55,]@53. The velocities 5§7fss and 0 ;. are

deduced taking into account the absence of impact of the swing leg tip on
the ground, which is equivalent to a null velocity of this tip.

. The intermediate configuration in single support is determined with the

five following parameters, qnt, 01,int and d2 ;¢ and the coordinates, (zp,int

and Yy ine) of the swing leg tip. Angle oy, is fixed equal to %

B Rlx RZ x

Fig. 2. Biped in the sagittal plane.

Then finally the vector of parameters has seventeen coordinates
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P = [aidsv 51,idsa gidsa Qfds, 61,fdsv gfdsa da diss; 5?)1‘557

* ] * *
5271'351 afssv 517fssa 52,fss’ 51,int» 52,inta xp,intyp,int]

3.4 Constraints

Constraints has to be considered to design nominal gait. We will present them
according to their importance on the feasibility of the walking gait.

Firstly, no motion is possible if distance d(A, B) between the tip of leg 2
and the hip joint, for initial and final configurations of the double support
and the intermediate configuration of the single support, is such that

d(A,B) > 2 x1 (17)

where [ is the common length of the femur and the tibia. In other words,
there is no solution with the geometrical model to compute d3 and d4.
Constraint (17) is also taken into account during the motion of the biped
in double support. The maximum value of d(A, B) in function of « is
considered.

The mechanical stops of joints for initial intermediate and final configura-
tions of each phase and during the motion are

—260° < ((52) ((52)"“” < —110°

min

—260° < (52 + 53) ((52 + 53) < —110°

min max

—230° < ((51) (61)maz < —127°

min

—230° < ((54) ((54)"“” < —127°

min
In double support the monotony condition for variable « is imposed

W(t) < 0 18
ter[%f%s}a() (18)

In single support, the monotony condition for variable « is imposed by the

inequality

émin + f(aiss)2d?ss > O (19)
where @i = Milge(a,.. a,..] P()
In single support it is fundamental to avoid singularity f(«) =0 to simu-
late one step. Then we define the following constraint

min  f(a) >0 (20)

Q€| ,afss]

Now the following constraints can be violated to simulate a step. However
there are important for experimental objectives.
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Each actuator has physical limits such that
(175 (@)1 = Tnas(1))) <0
(15 (@)1 = Tnas(B2])) <0

. (21)
(IT5(0)] = Tonas(ldz +5) <0

(IT5(@)] = Tnaa i) <0

max

The notation (),qq stands for the maximum value over one step. Function
I'az (%) can be deduced from a template, torque actuator/velocity, given
by the actuator manufacturer.

we must take into account of constraints on the ground reaction R; =

(ij Rjy)T in the tip of the stance leg j, j = 1 in single support and
j = 1,2 in double support. The ground reaction must be inside a friction
cone defined by the friction coefficient f, This is equivalent to write both
inequalities

Rjz — [Rjy <0
—ij - fR]y <0
From these two inequalities, the condition of no take off is deduced:
= Rjy > 0. (22)

There is also a constraint on the swing leg tip to avoid an impact with
the ground during its transfer. This constraint is defined by a parabola

function )
min |:y(06) - (xdga) - 1) ymaa;:l > O

a€laiss,ofss)

where (z,y) are the coordinates of the swing leg tip.
Optimal motions are defined for different velocities with the constraint

d

—_— = 23
Tss + Tds ! ( )

where v is the desired average velocity of the biped. Time T of the single
support is defined such as the desired average velocity for the locomotion
of the biped. The calculation of time T, of the single-support phase is

Afos
given by Ty, = / ida

83

ilss
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4 Optimal walk

Many values of parameters presented Section 3 can give a periodic bipedal
gait satisfying contraints (17)-(23).

Then a parametric optimization process, minimizing a criterion under non-
linear constraints, is possible to find a particular nominal motion. Let us define
this optimization process

min C(p) (24)
P
gilp) <0 i=1,2..n

where p is the vector of parameters, C(p) is the criterion to minimize with n
constraints g;(p) < 0 to satisfy. We give now some details about this optimiza-
tion process and the way to calculate its criterion during the single-support
phase and the double-support phase of the nominal researched motion.

4.1 Criterion

To find the nominal motion, criterion Cp is considered

1 Tss+Tgs
Cr =~ / r’'ra
d Jo

1 Qfss FTF Tas
== </ ——du +/ FTth>
d\Ja & 0

iss

(25)

where Tss and Tys are the times of single support and double support. This
criterion represents the losses by Joule effects to cover distance d, see [17, 18].

4.2 Single-support phase

From calculation of integral term (13) using the polynomial functions (9),
we obtain @(a) = 02 — o2, and velocity ¢. Acceleration ¢ can be obtained
with relations (14) and (15). Then the dynamics of the underactuated biped
in single support is completely defined. The torques are determined from the

four last equations of (6)
A2s(6)4 + Has(q,q) + G25(q) = DrasI’ (26)

Then Ass5(4 x 5), Has5(4 x 5) and Dpos(4 x 4) are the submatrices of A, H
and Dp, Go5(4 x 1) is the subvector of G. The invertible matrix Dyos5 allows
to determine the torque vector I'. The ground reaction R; = (Riz, Riy) in
the tip of the stance leg i are calculated applying Newton’s second law in the
center of mass G of the biped

Mig = R

Mj/.G = Rzy - Mg

where M is the mass of the biped and (z¢, yg) are the coordinates of G.
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4.3 Double-support phase

From relations (16) first, at each step time «(t), &(t) and &(t) are calculated
as polynomial functions of time, then §;(a), d;(a) and d;(a) (j = 1,2) are
determined. To realize the double support, there are an infinity of solutions
for the torques because the biped is overactuated. Only three generalized
coordinates, for example «(t), d; and da, are necessary to described the motion
completely. Then, we can parameterize the solution of torques in function of a
variable. To find this variable let us consider Newton’s second law in the center
of mass G of the biped in double support and the equation of the angular
momentum theorem applied in the leg tip 1 on the ground. This theorem, the
time derivative of the angular momentum in a fixed point equals the sum of
the external momentum forces in this fixed point, leads to an equation which
is equivalent to the first line of model (6). Then these three equations are

Mig = Riz + Rag (27)
Mijg = Ry + Roy — Mg (28)
A1(0)§ + Hi(q,q4) + G1(q) = —dRa. (29)

where A;(1 x 5), Hy(1 x 5) and are the first line of A and H, G1(4 x 1) is
the first element of G. Term d is the distance between the two leg tips on the
ground. Component Rs, does not appear in equation (29) because the ground
is assumed to be horizontal and plane. From equations (28) and (29), for a
given acceleration of the biped there is only one solution for Ry, and Rs,,
independently of the torques. The torques have an influence only on Ry, and
Rs,.. For this reason, a solution for the torques can be founded in function
of Ry, or Rs, as parameter. Let us choose Ry, and define the minimization
problem with the associated constraint on component Ro,
min 7 T*

_ley - Rla: S 0
7fR1y + le S 0 (30)

_fRZy - R2:r S 0

_fRQy +R2x < 0

With the four last lines of the vector-matrix equations (6) and (2) a relation
between torques I'™* and R, can be written

I'*=J— KRy, (31)

with K = D5 Doy o5 and
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J = D1:215 (A2551 + H25(q7 Q) + G25(Q) - D2z 25R22) +F581gn(D?q) + FUD?C]

The solution Ray oper to minimize the norm of the torques without constraint
is given when ™7 5911;;* = 0. Considering equation (31) Ray oper is given by

KTJ

KTK (32)

RQz optI’ —

defining a minimum value Raginy and a maximum value Roypae, the con-
straints on Ro, can be written under the simple form,

R23:inf < R23: < Rmeam (33)

Then a solution for the minimization problem (30) is given by three cases

o if Ry, inf < Ry, optl’ < Ra, sup then Ry, = R, optls
o if Ry, optI’ < Ry, inf then Ry, = Ra, infs

o if R2w sup < R2;E optI’ then RQm = R2w sup-

In the case where there is no solution, i.e Roginf > Rozmax, We choose Ra,
to minimize the violation of constraints such as

RQ:E inf + RQm sup
2

RQr =

4.4 Optimization algorithm

The algorithm NPSOL, see [19] from the package Matlab is used to solve
this optimization problem with its nonlinear constraints. The sequence of
treatment of constraints according to their importance is described Figure 3.
From level 0 to level 4, the constraints must be satisfied to simulate one step.
Others constraints as the maximum velocity of the biped, the limits torques
are considered in level 5.
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Level 0O

Constraints of existence of
solutions for the inverse
geometrical model for the
boundary configurations

N

Level 1

-+

Monotony of « for limit
conditions of single
support

Level 2

Contraint on the
singularity
f(a)=0

Level 3

i

b
MR

Constraint of monotony
of the velocity of & in
single support

Level 4

Constraints of existence of
solutions for the inverse
geometrical model

in double support

-+
\

Level 5

%
\

Other constraints
and criterion

Fig. 3. Sequence of constraints to satisfy before that the step can be defined

Sometimes, while solving the problem (24), the optimization process can
ask a value of the criterion or the constraints in a point py where they are
not defined. Another point p,;, the closest from pg is researched by an in-
termediate optimization process. For example if constraints goi(po) < 0,
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1 = 1,2,...,mo are not satisfied, py; is determined as the solution of the
problem
min [|py — pl|
P
(34)
goi(p) <0 i=1,2,..,mp

To solve this intermediate optimization problem (34) and the general opti-
mization problem (24), the gradient in function of the vector of parameters p
of the criterion and constraints is necessary. To obtain an efficient algorithm,
these gradients are analytically calculated.

5 Simulation results
Figures 4-7 are devoted to a chosen motion velocity for a biped which equals

0.3 m/s. Figure 4 shows that the needed torques for this trajectory are inside
the template, motor torque/velocity, given by the manufacturer.

140 T T T

— Knee 1

— = Haunch 1
- Haunch 2

120 - = Knee?2

I I I I I
4 6 8 10 12 14

Joint Velocity DT [rad/s]
Fig. 4. Velocity versus torque for the actuated joints.

The normal components of the ground reactions in function of time, during
one step are presented Figure 5. The constraint of unilateral contact on the
leg tip 2 is active because the fixed limit 20 N is reached.
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Fig. 5. Normal components in the stance leg tips.

Figure 6 shows in function of time, the evolutions of joint variables 61, d2,
03 and d4 in single-support phase and double-support phase.
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20

-80 -

Joint variables §; [°]

-120 -

-140 -

-180 . .
0 .

Time [s]
Fig. 6. Evolution of joint variables d1, d2, d3 et da4.

Figure 7, the behavior of the variable a is monotone as expected. The
discontinuity at the end of the single-support phase is due to the exchange of
both legs.
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0 0.2 0.4 06 08 1 12 14
Time [s]
Fig. 7. Evolution of a en function of time.

In conclusion, for this velocity 0.3 m/s of the biped an optimal motion
is feasible according to the constraints. Others velocities of motion for the
biped are tested with success. Figure 8, different values of criterion C'1 are
presented versus several velocities of motion. A walking biped with single-
support phases and double-support phases is more expansive from the point
of view of the minimization Cp for a velocity greater than 1 m/s. The curves
is more smooth if the optimal walk are obtained without to take into account
of Coulomb friction. For superior velocities a running gait is more appropriate,
(see for example numerical experiments in the paper [17]).
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Fig. 8. Cr in function of several motion velocities for the biped.

6 Conclusion

An optimization process is proposed to design optimal bipedal gaits for a
five-link biped. The walking gaits are composed of single-support phases and
double-support phases, but with no impact. The criterion is founded on the
integral of the norm 2 of the torques. A sequential procedure is done, taking
into account the constraints according their importance to realize a walk step.
Coulomb frictions which are nonlinear and discontinuous functions are taken
into account because their contribution cannot be neglected. A possible im-
provement would be to do a piecewise linear approximation of the Coulomb
friction, around the discontinuity point. Currently the main drawback of the
optimization method we use is that it is not exactly adapted to our problem.
Our problem is a semi-infinite problem, that is an optimization problem with
constraints that must be satisfied over an interval. We have then adapted our
problem by considering the constraints over an interval only at their most con-
straining point. The optimization problem we then solve is with non-smooth
constraints. But we obtained convergence even if NPSOL was not designed to
cope with such non-smooth problems. To solve our problem, we want in the
future to consider an optimization algorithm taking into account or not con-
straints following they exist or not. We hope also to experiment on prototype
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Rabbit these reference trajectories and to extend also this work to a walking
biped with more degrees of freedom.
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