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Abstract— The problem of motion trajectory optimization with
constraints is considered for robotic system with actuated joints.
Constraints concern contacts and path-following in the Cartesian
space. These constraints arise in walking patterns. In this
study we are dealing with cases where the same constraints
hold during a given motion. The trajectory optimization is
performed by defining some state variables as polynomials, and
the best parameters of the polynomial functions are obtained
from suitable optimization programs. By taking into account
motion constraints, it appears that the number of the problem’s
optimization parameters can be reduced. Subsequently, the struc-
ture of the optimization problem is different. A procedure to solve
this optimization problem is proposed. A simple case is used to
compare the proposed methods with the one that is used for
solving the similar problem without parameters reduction.

I. INTRODUCTION

Considerable work have been devoted to optimal control
of systems. There are mainly two numerical approaches to
solve such problems: (i) indirect methods are based on the
Pontryagin’s Maximum Principle which results in solving a
two-points boundary value problem, and (ii) direct meth-
ods that solve the discretized problem by using parametric
optimization techniques. Indirect methods give more precise
results relatively to direct ones, but the convergence domain
is smaller. In [1], authors used a variational approach to solve
the trajectory optimization problem. In [2], [3], [4] the authors
used a collocation method. The authors of [5], [6], [7], [8],
[9], [10] defined the evolution of joints or cartesian space
variables with polynomials or spline functions. Polynomials
and splines are characterized with boundary values or control
points, which are the optimization variables.

This paper deals with optimization of either contact trajec-
tories or geometrically constrained ones. Contact trajectories
require solving for the distribution of internal forces due to
over-actuation when a contact occurs. Afterwhat, the opti-
mization problem to be solved is actually the same in both
formulations. To generate a motion with geometric constraint,
we suggest using a minimal number of parameters since the
system has less degrees of freedom (dof). The problem of
optimal trajectory generation with contacts have been consid-
ered in [1], [7], [8], [9]. In [10] closed chain mechanisms
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have been considered. In [1], [8], [9] geometric constraints are
simply formulated as equality constraints at the control points.
Reduction of parameters’ number is proposed in [5], [6], [7],
[10] (in [5], [6] geometric constraints were only considered at
discrete instants of the motion). Then the missing parameters
are determined from the reduced ones. One need to check
the existence of the remaining parameters: this corresponds
to a situations where solution to an inverse geometric model
doesn’t exist. However, in [5], [6], [7], [10] the existence issue
was not considered. In this paper we emphasize rigorously
on the obtained optimization problem when the number of
parameters is reduced in the geometric constraint case. We
consider the conditions of existence for the inverse geometric
problem; we show that the problem to be solved cannot
be handled by classic SQP or Interior point methods. An
optimization procedure to solve such problems is presented.

A comparative study is made between our parameters re-
duction method and a method without reduction. There have
been some work devoted to comparative studies on trajectory
optimization problems, see [11], [12], [13], but not in the
presence of contacts. For robotic manipulators, [11], [12]
have shown that the trajectory optimization is faster when
torques computation is obtained from the inverse dynamic
model (relatively to having a collocation equation between
joint angles and torques). The inverse model is computed faster
than the direct one. Moreover, the number of optimization’s
iterations is more important even with a reduced number
of parameters. The gain of the overall computation time is
subsequent to the dynamics model computation rather than
to simplifications of the optimization problem. However, [13]
claimed that using flat outputs or, at least, outputs with higher
relative degree, decreases the size of the searched space for
the trajectory optimization; hence decreasing the computation
time. In this case, the gain of computation time is directly
linked to the reduction of the search space for the trajectory
optimization. Therefore, we want to investigate, in the case of
trajectory optimization with contact, if there are some benefits
in reducing the dimension of the searched space.

This paper is organized as follow: in section II we illustrate
the general optimization problem in the case of geometric
constraint in both cases: without and with reduction of the
optimization parameters. Then, in section III we compare,
for a two-link robot with a geometric constraint, the two
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formulations of the trajectory optimization.

II. GENERAL FORMULATION OF THE OPTIMIZATION

PROBLEM TO SOLVE

A. System studied

We consider robotic systems in which all joints are actuated;
the dynamic model obtained from Lagrange formulation is:

u = A(q)q̈ + H(q, q̇) − J(q)T Fc (1)

u ∈ R
n is the control input, q ∈ R

n, q̇ ∈ R
n, q̈ ∈ R

n are
respectively the joints’ positions, velocities and accelerations,
Fc is the vector of contact force exerted by the environment,
A(q) ∈ R

n×n is the inertia matrix, and H(q, q̇) ∈ R
n is the

vector of Coriolis, centrifugal and gravity effects, J(q) is the
jacobian matrix. Joint limits are expressed in the form:

qmin ≤ q ≤ qmax (2)

qmin, qmax are respectively the minimal and maximal limits.
Actuators’ limitations are additional constraints that can be
approximated by linear inequalities on u and q̇, that is:

au + bq̇ + c ≤ 0 (3)

B. Characteristics of the desired motion

Let a motion be for time t ∈ [t0, tf ], where t0 = 0. The
motion takes place in an environment having obstacles. Con-
straints describing static obstacles avoidance can be written:

c(q(t)) ≤ 0 (4)

Two type of motions are considered: motions under a
contact linking part of the robot to the environment, and
constraint motion along a planned path. Both constraints can
be rewritten as geometric equalities of the form:

g(q(t)) = 0 (5)

When contacts with the environment occur, additional force
constraints (6) must be statisfied; they stand for the unilater-
ality of the contact and for Coulomb friction law.

s(Fc, q̇(t))
=≤ 0 (6)

Finally additional constraints on the initial and the final
states that can be written as (7). For example, constraints that
are defined for an optimal motion between a given initial and
final state (point-to-point motion).



gq0(q(t0)) = 0
gq̇0(q(t0), q̇(t0)) = 0
gq̈0(q(t0), q̇(t0), q̈(t0)) = 0
gqf

(q(tf )) = 0
gq̇f

(q(tf ), q̇(tf )) = 0
gq̈f

(q(tf ), q̇(tf ), q̈(tf )) = 0

(7)

We aim at motions that minimize the following criteria:

C(q(t), q̇(t), u(t))

= φ(q(tf ), q̇(tf ), tf ) +
∫ tf

t0

L(q(t), q̇(t), u(t))dt
(8)

When L(q(t), q̇(t), u(t)) = 0 the criteria depends only on end-
motion states, e.g. the desired finale velocity or time. The
integral term can represent energy consumption during all the
motion. With all previous characteristics of the desired motion,
the trajectory optimization problem is given by:

min
q(t),u(t),tf

C(q(t), q̇(t), u(t))

subject to (1)· · · (7)
(9)

The goal is to find the optimal functions q(t), u(t) and the
final time tf . For simple problems, the Pontryagin’s Maximum
Principle allows finding analytical solutions. In the general
case, no method exist to find q(t), u(t) and tf exactly and
numerical methods are used instead. In sections II-C and II-D
we present two ways of approximating this problem so that it
can be solved with existing numerical methods.

C. Optimization problem in the case without reduction

An idea to solve the problem (9), called the direct method,
see [2], [3], [4], [5], [6], [7], [8], [9], [11], [12], is to discretize
q(t) and sometimes u(t). Then the new discrete problem is
solved with an optimization program, such as the SQP method,
see [14], [15] or an Interior point method (IPM), see [16].
Different discretization methods were proposed. We define
q(t) as a sequence of polynomials connected at intermediate
points. Those polynomials satisfy continuity conditions at
connection points. u(t) will be determined thanks to the
inverse model (1), as done in [5], [6], [7], [8], [9], [11], [12].

The points of connection of the polynomials are given by
the times t0 < t1 < · · · < tN−1 < tN = tf . At connection
instants, the variables q(t) are written as:


qk = q(tk) k = 0 · · ·N
q̇k = q̇(tk) k = 0 · · ·N
q̈k = q̈(tk) k = 0 · · ·N

(10)

The expression of the function q(t) written with polynomi-
als over t ∈ [tk tk+1], k ∈ [0 · · ·N − 1] is given by:

qj(t) =
dk∑
i=0

aj
ki(t − tk)i j = 1 · · ·n (11)

where qj(t) is the j th component of the vector of functions
q(t), dk is the degree of the polynomials of the time interval
[tk, tk+1], k ∈ [0 · · ·N − 1], aj

ki are the polynomials coef-
ficients. The coefficients aj

ki and the degree of polynomials
are determined from the values of the variables at connection
time, i.e. qk, q̇k and q̈k, and from the continuity conditions
at connection points. Hence, qk, q̇k and q̈k are considered
as parameters. In fact we can just choose qk or qk with q̇k,
and impose the continuity up to the chosen derivative level.
Considering the three parameters qk, q̇k and q̈k, we have dk =
5 for all intervals, and the 6 coefficients of each polynomial
are determined from its six limit conditions. We consider
equidistant connection points, starting from t0 = 0. Then all
ti are determined from tN and the vector of all the parameters
is given by p = [q0, q̇0, q̈0, · · · , qN , q̇N , q̈N , tN ]; size of is
3(N +1)n+1. With this discretization, the equality constraints



must be written only at connection points. Otherwise the
problem can be over-constrained. Hence, equality constraints
(5) become:


g(qk) = 0
G(qk)q̇k = 0 k = 0 · · ·N
G(qk)q̈k + H(qk, q̇k) = 0

(12)

where G(qk) = ∂g
∂q

∣∣∣
q=qk

and H(qk, q̇k) = dG
dt

∣∣
t=tk

q̇k. (12)

includes the derivations of the constraints (5) up to the last
chosen derivative order.

The optimization problem (9) is rewritten in the form:

min
p

C(q(p, t), q̇(p, t), q̈(p, t))

subject to (2), (3), (4), (6), (7), (12)
(13)

In (13), the criteria is not written with respect to u(t), since
u(t) is determined from (1). In the case of contact constraints,
there might be an infinite Fc satisfying (6), hence an infinite
u(t) representing different repartition of internal forces in
the closed-chain. We compute u(t) by solving the problem
(14) which gives u(t) that minimizes the criteria (8) while
respecting the dynamic constraints (1), (3) and (6).

min
u(t)

L(q(t), q̇(t), u(t))

subject to (1), (3), (6)
(14)

L(q(t), q̇(t), u(t)) is usually quadratic in u(t). In 2D case
(1), (3) and (6) are linear constraints in u(t); hence, this
problem is a classical QP. In the 3D case, the contact con-
straints (6) are not linear in u(t); but, it is possible to make a
linearization. Moreover, in (13) some inequality constraints are
written ∀t ∈ [t0, tf ], which makes (13) become a semi-infinite
optimization problem. A solution to solve such problems is to
discretize the semi-infinite constraints. It is possible to use
different discretization points than the times of connection
points. The obtained problem can be solved by any SQP-based
optimization algorithms, e.g. NPSOL [14], or FSQP [15].

D. Optimization problem in the reduction case

Our proposed problem formulation is similar to the one pre-
sented in the previous section. It is based on the discretization
of the problem by writing q(t) as a sequence of polynomials.
The difference is in reducing the number of parameters as
much as possible by using the constraints (5) and (7).

A first approach reduces the problem to the definition of
the evolution of as much variables as available dof. For this,
we solve (5) with respect to some components of q(t):

qb(t) = h(qa(t)) (15)

q(t) is partitioned as q(t) = [qa(t) qb(t)]; qa(t) is defined as
polynomials (11), and qb(t) is deduced from (15). Note that
the inversion giving (15) is subject to restrictions. For this
inversion to be possible, some constraints must hold, that is:

f(qa(t)) ≤ 0 (16)

If qa(t) does not satisfy (16), there is no solution for the
inversion of (5), and qb(t) is not defined.

In fact we have observed from the example of a 2-link robot
(section III), that it is better to use a different approach. When
there is a constraint on the position of a given point of the
system, it seems better to write as much as possible the motion
in this space. Rather than mixing the spaces in which motion
is written. Therefore, we will define partially a motion in the
cartesian space, in where most of the constraints are written.
We note by z(t) ∈ R

nz the absolute position and/or orientation
of one or several points of the system. z(t) only includes the
points that are involved in the constraints (5). The geometric
constraint (5) can be written in function of z(t), that is:

gz(z(t)) = 0 (17)

where gz : R
nz → R

nc (nz ≥ nc). We consider the
partitioning of z(t) = [za(t) zb(t)], za(t) ∈ R

nz−nc and
zb(t) ∈ R

nc , for which it is possible to determine zb(t) by
inverting (17). za(t) is defined as a polynomial like (11). The
expression giving zb(t) from za(t) is:

zb(t) = hz(za(t)) (18)

Usually, there is no constraints for the existence of this
inversion, and this expression is simple when zb(t) is constant.

By defining za(t), we have defined only part of the motion.
The remaining dof are defined in the joint space q(t). But
we have to partition q(t) = [qa(t) qb(t)]. The joint variables
qa(t) ∈ R

n−nz are defined as polynomials. The joint variables
qb(t) ∈ R

nz are obtained by inverse geometric model from
z(t). The expression of the inverse geometric model is:

qb(t) = hqz(qa(t), z(t)) (19)

Here the existence of qb(t) is subject to:

fqz(qa(t), z(t)) ≤ 0 (20)

Furthermore, by derivation of relations (18) and (19), we
obtain the relations (21) and (22). Those relations allow to
determine q̇(t) and q̈(t) from ża(t), z̈a(t), q̇a(t) and q̈a(t):{

żb(t) = Hz(za(t))ża(t)
z̈b(t) = Hz(za(t))z̈a(t) + H

′
z(za(t), ża(t))

(21)

where Hz(za(t)) = ∂hz

∂za
and H

′
z(za(t), ża(t)) = dHz

dt ża. There
is generally no restrictions for the existence of żb(t) and z̈b(t).


q̇b(t) = Hqz(qa(t), z(t))[q̇a(t)T ż(t)T ]T

q̈b(t) = Hqz(qa(t), z(t))[q̈a(t)T z̈(t)T ]T

+H
′
qz(qa(t), z(t), q̇a(t), ż(t))

(22)

where Hqz(qa(t), z(t)) = ∂hqz

∂qa z and

H
′
qz(qa(t), z(t), q̇a(t), ż(t)) = dHqz

dt [q̇a(t)T ż(t)T ]T .
For the existence of solutions to (22), the constraint (20)

must hold. But this constraint must be strictly satisfied, since
the case fqz(qa(t), z(t)) = 0 is generally be a singularity.
Therefore, in the optimization process, we will consider the
constraint (23) rather than (20).

fqz(qa(t), z(t)) + ε ≤ 0 (23)

where ε > 0 will be chosen very small.



From (18) and (19), q(t) is obtained from za(t) and
qa(t); thus only za(t) and qa(t) are defined as poly-
nomials. At instants tk∈[1···N−1], (18), (19), (21) and
(22) hold. The optimization parameters of instant tk are
[zak

, żak
, z̈ak

, qak
, q̇ak

, q̈ak
] (keeping the subscribe k to note

the variables at instant tk). At each tk, there is 3(n − nc)
parameters instead of 3n for the method of the previous
section.

For the instants t0 and tN the additional equality constraints
(7) hold. Then, the number of parameters is reduced further.
We assume that the optimization problem (9) is well defined;
that is, constraints (5) and (7) are independent. We consider
two cases for constraints (7): (i) if equality constraints are
written on cartesian coordinates; it is possible to reduce
the parameters as proposed, i.e. just by adding constraints
(7) to constraints in (17), and (ii) if the constraints (7)
are explicitly written in the joint space; the components
of qa, q̇a or q̈a are fixed. The constrained components of
qb, q̇b or q̈b are rewritten as constraints on z, using the
geometric model. These new constraints are added to those
in (17). Therefore, if there are ni initial constraints and
nf final constraints in (7), there will be 3(n − nc) − ni

initial parameters and 3(n − nc) − nf final parameters.
And, the vector of all the parameters is given by pr =
[za0, ża0, z̈a0, qa0, q̇a0, q̈a0, ..., zaN , żaN , z̈aN , qaN , q̇aN , q̈aN ,
tN ] and is of size 3(N + 1)(n − nc) − ni − nf + 1.

Finally the optimization problem we obtain does not include
equality constraints anymore, that is:

min
pr

C(q(pr, t), q̇(pr, t), q̈(pr, t))

subject to (2), (3), (4), (23)
(24)

For some values of pr, the vectors q(pr, t), q̇(pr, t) and
q̈(pr, t) are not defined, and hence the optimization problem is
not defined, because the constraint (23) doesn’t hold. So during
the optimization processing, the constraint (23) must hold. Yet,
usual SQP-based and Interior point methods allow violation
of the constraints during the optimization processing: they
cannot be used in this case. Therefore, one can use feasible
optmization methods such as FSQP or KNITRO programs,
which guarantee constraint holding during the optimization.
In our case study, KNITRO proved to be much faster, because
it has been designed to handle sparse problems. On the
contrary, FSQP can only handle dense problems. In motion
optimization problems, sparsity increases with the number of
phases N of the problem. KNITRO optimization algorithm is
built in two steps: the first step solves the problem without
feasibility guarantee until a feasible point is find. The second
step continue solving the problem while always satisfying the
constraints. We will adapt this procedure for our problem using
three steps:

1) minimize the maximum of the constraints (23) until they
hold;

2) minimize the maximum of the constraints (2), (3), (4)
until they hold while always satisfying the constraints
(23);

x

z

θ1

θ2

u1

u2
l1

l2
(xe, ze)

x
=

co
n
st

a
n
t

Fig. 1. Illustration of the 2dof robot considered

3) minimize the criteria while always satisfying all the
constraints;

With this procedure, the constraints (2), (3), (4) and the criteria
will never be evaluated in a case where they are not defined.

III. COMPARISON OF THE TWO APPROACHES

A. Application-case study with the two methods

1) A 2dof robot and its considered motions: We consider a
two-link planar robot, see Fig. 1, actuated at both joints q =
[θ1 θ2]T through u = [u1 u2]T respectively. The joint limits
of the constraints (2) are given by θ1min = −π

2 , θ1max = π
2 ,

θ2min = −π
2 and θ2max = π

2 . The actuators limits are:
{ ±u1θ̇1max ± θ̇1u1max − θ̇1maxu1max ≤ 0

±u2θ̇2max ± θ̇2u2max − θ̇2maxu2max ≤ 0
(25)

θ̇1max and θ̇2max are the maximal velocities when u1 = 0 and
u2 = 0 respectively. u1max and u2max are the maximal torques
when θ̇1 = 0 and θ̇2 = 0 respectively.

We consider a constrained vertical motion of the end-
effector, that is:

xe(t) = 0.363m (26)

We also considered a point-to-point motion starting from
ze0 = zemin + 0.1 and going to zef

= zemax + 0.1. zemin and
zemax are respectively the minimum and maximum reachable
positions. We have the following initial and final constraints:



ze0 = zemin + 0.1 m
zef

= zemax − 0.1 m
θ̇10 = θ̇20 = θ̇1f

= θ̇2f
= 0

θ̈10 = θ̈20 = θ̈1f
= θ̈2f

= 0

(27)

Finally, we consider the energy criteria to be:

C(q(t), q̇(t), u(t)) =
∫ tf

t0

∑
j=1,2

max
(

Ruj
2

K2
em

+ uj θ̇j , 0
)

dt

(28)
where R is the resistance and Kem the electro-mechanical
constant of both actuators. This criteria represents the energy
lost in the actuators’ resistance and the mechanical energy
transfered to the robot. But the function max(., 0) means that
the energy returned by the robot is not reused nor consumed,
just dissipated in a resistance.



2) Optimization problem without reduction: We consider
a motion with 4 to 10 phases. The formulation of the
problem without reduction, see section II-C, the equality
constraints are kept in the optimization problem. Here, we
reduce the number of parameters with the initial and final
constraints (27). Therefore the vector of parameters,
composed of 6N − 5 parameters, is given by p =
[θ11, θ21, θ̇11, θ̇21, θ̈11, θ̈21, · · · , θ1 N−1, θ2 N−1, θ̇1 N−1, θ̇2 N−1,
θ̈1 N−1, θ̈2 N−1, tf ]. The motion constraint (26) is rewritten
at connection points as:

xej = 0.353m ẋej = 0 ẍej = 0 j = 0, 1, 2 (29)

The optimization problem to solve reduces to minimize (28)
with respect to p, with the constraints (2), (25), (27) and (29).

3) Optimization problem with reduction: We consider the
same number of connection points as in the case of no
parameters’ reduction. The vertical motion constraint applies
to the end-effector. We define part of the motion in the
cartesian space. The part of the motion defined is ze(t), as
a polynomial function similarly to (11). xe(t) is obtained
from (26). In fact, for this case study, it is appropriate to
define the motion in the Cartesian space; there is no need
to define additional joint variables as polynomials. θ1(t) and
θ2(t) are obtained from the inverse geometric model. With
notations of II-D, ze(t) stands for za(t), xe(t) for zb(t), qa(t)
is empty, qb(t) is θ1(t) and θ2(t). The constraint concerning
the existence of the inverse model solution:{ −zemax < ze(t) < zemax

zemax =
√

(l1 + l2)2 − 0.3632 (30)

The constraint concerning the existence of the inverse
model solution (30) is equivalent to (20). Then the proposed
reduction in section II-D, leads to the vector of parameters
pr = [ze1, że1, z̈e1, ..., ze N−1, że N−1, z̈e N−1, tf ] with 3N−2
parameters. The optimization problem reduces to minimize
(28) with respect to pr, with the constraints (2), (25) and
(30). This problem is solved with the three steps proposed
in section II-D.

B. Results

Using both formulations, we conducted several optimiza-
tions with different number of phases using MATLAB to-
gether with the optimization program KNITRO [16]. The
optimization is initialized with a motion parameterized by a
5 order polynomial going from initial to final states. Also, an
algebraically computed gradient is provided to the optimiza-
tion program to increase the computation speed and improve
the convergence near the solution. The solution is presented
Fig. 2. Another solution is found by using the other inverse
geometric model solution. The Fig. 3 summarizes the obtained
results. The optimization times are obtained on a Pentium
Xeon 2.3GHz. They can be improved using programming
languages, like Fortran or C/C++. The Fig. 4 presents the
maximum violation of the path constraint (in position).

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x[m]

z
[m

]
Fig. 2. Optimal motion obtained

C. Comments

The Fig. 3 show that the reduction based method requires
more time and iterations for small number of phases (4 and
5 phases), still the precision of path constraint satisfaction
decreases, see Fig. 4. The reduction method becomes however
faster for higher number of phases. From curves’ shapes
extrapolation, the reduction method seems to be suitable for
higher number of phases, and allows to satisfy the path
constraint even for very few number of phases. To conclude,
the reduction of parameters seems better both for any number
of phases.

These results have obviously some limitations. First, the
parameter reduction is difficult to implement because it needs
additional modules (inverse models). Also, the differences
between the two methods will depend on the number of
contacts. Indeed, the reduction method for motions with many
contacts is beneficial whereas it is not with small number of
contacts. Hence, this approach is appropriate to humanoids’
optimal walking motions, and even better suited to more
legged robots. Another limitation of the reduction method is
that expressing the motion in the Cartesian space will not
allow motions close to singularities; whereas working in the
joint space do not restrict such motions. Finally, the proposed
reduction can only be systematically applied to systems with
independent contacts that are explicitly written in the Cartesian
space. There is still work to be done in order to extend the
method to systems having contact state changing during a
motion, as in [1].



Fig. 3. Comparison of the results of optimization. The top and middle curves
show that the reduction of parameters is more efficient for more phases. The
bottom curves show that the values of energy consumption are close for both
situations, except for few number of phases; in this situation the no reduction
case allows smaller criteria due to some path constraint violation (Fig. 4).

Fig. 4. Errors in verification of path constraint for the no reduction case: the
fewer the number of phases is, the larger is the violation of the path constraint.

IV. CONCLUSION

In this paper we discuss how to perform parameters reduc-
tions for the trajectory optimization of robotic systems with
contacts or motion constraints. We show that the optimization
problem to be solved is of particular form and cannot be solved
with classical SQP methods and Interior point methods, but
only with feasible algorithms, such as the program KNITRO
or FSQP. We illustrate on an example that the trajectory
optimization is better. But, the proposed approach can only
be applied for motions with independent contacts, explicitly
written in the cartesian space, and for completely actuated
systems. In future work, we aim at applying the proposed
method to obtain optimal walking motions, and other motions
with contacts for the humanoid robot HRP-2 [17].
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