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Abstract—STP-BV is a bounding volume made of patches of
spheres and toruses. These patches are assembled so that a
convex polyhedral hull is bulged, in a tunable way, into a strictly
convex form. Strict convexity ensures at leastC1 property of
the distance function –and hence, its gradient continuity.STP-
BV were introduced in our previous work [1], but proximity
distance queries were limited to pairs of STP-BV covered objects.
In this work we present an alternative to achieve fast proximity
distance queries between a STP-BV object and any other convex
shape. This is simply made by proposing a support mapping
for STP-BV to be used with GJK algorithm [2]. Implementation
and experiments of the proposed method and its performance
are demonstrated with potential applications to robotics and
computer graphics.

I. I NTRODUCTION

The distance function, its properties and its potential ap-
plication in robotics planning and optimization were nicely
studied by the seminal work of Gilbert and Johnson [3]; they
also elegantly proved the existence, under certain conditions,
of generalized gradients and directional derivatives of the
distance function that can be used efficiently in optimized
trajectories generation. Another of their result proved –as
we motivated differently and independently in [1]– that the
gradient continuity of the distance function is guaranteedif
one object, from the pair being tested, is strictly convex.
In [3], they revealed about achieving such a property by
slightly budging objects within a given tolerance margin.
However, they did not provide a method to achieve practicly
this property. In our previous work [1], we proposed a new
method to implement this idea by wrapping sets of 3D points
cloud –representing vertices of a graphical geometric model
of a given object (e.g. any robot’s link)– with a new bounding
volume called STP-BV having the following properties:

• it is build from patches of spheres and toruses (STP);
• it is at leastC1;
• it can be seen as a tunableregularization of the polyhedral

convex hull as it can be continuously morphed from the
convex polyhedral hull to the sphere that includes all the
object;

In fact our BV can be seen as a merging of two properties
which can not be found together in any existing known BV
taken alone (see [4] for a list of BVs): it merges the smoothest
and simpler know convex BV (spheres), with the best known
volume-ratio convex-fit of any object: the polyhedral convex
hull (PCH).

Yet, in our previous work [1], a construction method for
STP-BV was proposed. Then, we used V-Clip [5] as a basis
for distance queries which were restricted only on a pair of
STP-BV. This drawback must be discarded since it is sufficient
to have only one object as strictly convex to ensure the
continuity of the distance’s gradient. This is very important
because it has a nice consequence in robotics: it is indeed
enough to cover any robot with STP-BV to guarantee the
gradient continuity of the distance function computed withany
other obstacle. Indeed, the continuity of the gradient induces
continuity of the low level velocity control in any tracking
task which makes use of the proximity distance. Examples of
such tasks could be reaching a target with auto-collision and
collision avoidance [6] plus the included references, tracking
a trajectory with a distance clearance [7], making a contact
with the environment by reducing the distance to zero [8]...
The space limitation does not allow to discuss many other
remarkable work in the field.

This paper proposes a new implementation of STP-BV
proximity queries using a hierarchical approach instead ofa
feature-based approach, yet we keep track of the coherence
and spatial properties to speed distance queries. Our novel
contribution in this paper solves the following:
• In [1], the distance query was made only between a

pair of STP-BV covered objects. This is because we used
a feature-based approach in which distance computation are
based on properties of the related voronoi region structure.
It is easy to draw such properties between pairs of voronoi
region representing the same geometrical features (pairs of
STP-BV or pairs of PCH) and exploit neighboring region for
time and spatial coherence. This generalization would have
been extremely difficult to do if each object of a pair has a
different model representation and a different topology for the
related voronoi regions respectively.
• A consequence of the previous remark is that in [1],

the distance computation was restricted to pairs of STP-BV
objects and was achieved in two steps: the first step uses the
underlying polyhedron convex hull (PCH) –obtained from the
STP-BV vertices (the center of the small spheres)– and use V-
Clip to find the closest features of a pair of underlying PCH.
Once found, the pair underlying PCH features allows knowing
the potential closest pair of STP-BV features (small sphere,
big sphere or torus) respectively; this is made through heuristic
association rules between STP-BV features and the underlying



Fig. 1. STP-BV construction steps, from left to right: pointclouds (vertices of an object), building vertice-spheres (small radius spheres for security margin),
linking vertices-spheres with face-sphere (big radius spheres), closing neighboring face-spheres by edge-toruses (equivalently, the edge-torus is obtained by
rotating one face-sphere arc toward the neighboring one).

CPH features. Finally the distance is computed between thre
possible cases: two spheres, two toruses or a torus and sphere.
First, even if they are very rare, there are cases where (i) the
vertices used for STP-BV might not be convex, and (ii) the
heuristics association rules might fail. These degeneratecases
suggest particular programming efforts for their identification
and treatment.

These drawbacks are definitely solved in this work. This
is made thanks to a hierarchical approach of the distance
computation such as the well known GJK algorithm [2], up-
to-date implementation of which allows fast distance queries
between any convex shapes, as far as a support function exists
for these shapes [9] [10]. We thus propose a support function
for STP-BV. We also made several optimizations in the STP-
BV and GJK implementation and improved the performance
of distance queries as will be seen in benchmark instances.
Namely, we also make use of time and spatial coherence when
this is allowed.

II. BACKGROUND: STP-BV

A. Basics

A STP-BV is a bounding volume made of parts of spheres
and toruses. The basic idea behind it is to round-off the flat
parts of a polyhedron convex hull (edges and faces) from
which distance gradient discontinuities are originated. To do
so, we perform, in first approximation the following:

• each vertex is replaced by a sphere with small radiusr,
called small sphere,

• each face is associated with a part ofbig sphere with a
radiusR, that is tangent to the small spheres attached to
the vertices of this face,

• each edge is recovered by a part of torus connecting the
big spheres of the adjacent faces.

Parts of STP-BV are illustrated on Fig. 1, while a full
STP-BV is depicted on Fig. 2. This description is only an
approximation because, due to the curvature of the big spheres,
some small spheres are not part of the STP-BV while their
associated vertices were part of the original PCH. The big
spheres define triple of small spheres and thus triple of vertices
and faces. The polyhedron associated to the STP-BV might
thus be different from the original PCH. We call this new
polyhedron theunderlying PCH.

r is the minimal distance between the original PCH and
the STP-BV. It defines a security margin for the collision
detection.R controls the curvature of the STP-BV, and thus the
regularity of the distance gradient. Whenr → 0 andR → ∞,
the STP-BV tends to the original PCH, Fig. 2.

Fig. 2. A robot part (humanoid chest): the polyhedral convexhull bounding
volume (PCH-BV), left; and the sphere torus patches bounding volume (STP-
BV), right: light pink (big spheres patches), pink (torusespatches), red spots
(small sphere patches).

B. Construction

The STP-BV building is similar to the gift wrapping algo-
rithm (or Jarvis march) for PCH, Fig. 1. For givenr andR, we
start from a cloud of points that have been covered by small
spheres. We first look for a triple of small spheres such that
there exists a big sphere tangent to them and containing all the
other small spheres. The vertexes define three edges. We turn
the big sphere around one of them until it becomes tangent to
another small sphere. This defines two new edges. Turning the
sphere around the edge defines an inner volume that is the part
of torus we need. By turning around each new defined edge
until we reach edges we already met, we completely wrap the
cloud of points and end up with its STP-BV.

III. STP-BV SUPPORTFUNCTION

Prior to further discussion, we recall quickly the definition
of the key concept and step in GJK that is thesupport
mapping, which is made through as fast as possible support
function.

A. Support function

The support function of a compactA is the mappingsA

which associates to each vectorv the point ofA such as:

v.sA(v) = max{v.a : a ∈ A}



wheresA(v) is the support point of the object in the direction
v. In other words, the support mapping gives the farthest point
on the object’s surface in this given direction.

For convex objects, the support mapping also associates to
each vector the point of the object which admits this vector as
normal on the surface; for strictly convex objects, this point
is unique. The computation of the support function reduces
therefore to find the point which admitsv as normal.

Since STP-BV are made from bounded patches of spheres
and toruses as primitives (i.e. basic geometric features),we
divided in two steps the computation of the support point of
an STP-BV in the directionv:

1) find out what primitive (i.e. what STP-BV’s patch)
containsv as normal, and then

2) calculate the support mapping of this primitive.

The second step is reduced to use the support function for a
sphere or that of a torus; both are very fast. The first step is less
trivial; let us define basic data structures that are necessary for
the STP-BV’s features search. Based on these data structure,
several feature search method will be presented.

B. Basics and data structures

1) STP-BV Voronoi Diagram: The voronoi diagram of an
STP-BV is a division of the outside space in many cells or
regions such as each featureF of the STP-BV has its cellCF

so that a pointp outside the STP-BV belongs toCF iff p is
closer toF than any other STP-BV features.

Several observations can be made at this stage:

• CF is the set of points whose projection on the STP-BV
is onF ;

• the vector
−→
p′p, p′ being the projection ofp on the STP-

BV, is normal to the STP-BV atp′, so that any point
q = p′ + k · −→p′p, k ∈ R

+ lies in CF ;
• any Voronoi cell is limited by straight line beams passing

by the points of the feature border and following the
directions of normal vectors at these points.

2) The Vector Voronoi Diagram: The Vector Voronoi Dia-
gram of an STP-BV is a division of the unit sphereS2 in cells,
such that each featureF has its cellCF and thatCF = Γ(F)
whereΓ is the Gauss map [11]. Thus, a unit vectorv belongs
to theCF iff there is a point onF such that the unit normal
vector to the STP-BV at this point is equal tov.

Fig. 3. Obtaining vectorial Voronoi diagram.

Intuitively, this is similar to shrinking the STP-BV to a
point while augmented with its voronoi diagram primitives,
see Fig 3. During this transformation, the voronoi diagram
varies continuously. When the STP-BV reduces to the single
point, the limit of the voronoi diagram is a decomposition of

the vector space. We may consider, without loss of generality
the point equals to~0; p ∈ CF iff

−→
p′p is normal to the STP-BV

at a point onF . The vector voronoi diagram is the intersection
of this limit diagram with the unit sphere and the naming
Vector Voronoi Diagram is the simple interpretation of the fact
that the partition of the sphere is simply the voronoi diagram,
but reduced to the vector space.

Torus VVR

Big Sphere 

VVR

Small Sphere 

VVR

Fig. 4. All Vector Voronoi Regions (VVR) for a regular STP-BVcovered
tetrahedron.

3) Vector Voronoi Region: The Vector Voronoi Regions (or
Cells), noted VVR, of STP-BV are such that, Fig 4:

• The small sphere VVR is limited by a finite set of part
of cones whose apex is the origin and whose axes are
respectively the adjacent edges, Fig 5.

• The big sphere VVR is limited by three planes passing
by the origin.

• The torus VVR is bounded by two cones and two planes.

Fig. 5. Steregraphic projection of vectorial voronoi regions.

A stereographic illustration (2D projection) of the vector
voronoi regions is illustrated by Fig. 5 for clarity.

C. Feature search methods

The feature search step reduces to finding which VVR
contains a given direction vectorv. We have seen previously
that the VVR of STP-BV’s features are limited by a finite set
of cones and planes. We can check if a given vector is within
a VVR simply by testing if the vector lies in the right side
of each boundary. This is made simply using a dot product
between the vector and the axis of the cone or the plane’s
normal (we consider the plane as a particular cone having



π/2 angle). Indeed, for a conec with normalized axisa and
angleθ, we have :

v insidec ⇐⇒ v.a

‖ v ‖ > cos θ

This evaluation allows also having an evaluation of the
distance between the vector and the violated boundary. We
noticed that a VVR may be expressed exclusively with its
boundaries, and each boundary simply with its axis and its
angle cosine.

Now that we have a method to check if a vector lies inside a
VVR, it remains to find to which VVR a given vector belongs
to. We propose hereafter three non-exclusive methods which
resolve this.

1) Naive method: It consists simply in checking for each
VVR if the vector is inside or not. This technique always
finds the feature in demand. The complexity of this method
is howeverO(n), n being the number of features in the STP-
BV, and it cannot be easily used to take advantage of time
and spatial coherences. A possible method would be a spiral
march around the last feature found, which is really difficult
in such irregular patches.

This naive method is certainly not optimal, but since it is
very robust, we used it to check the results of the following
optimized ones.

2) Guided march method: This method is inspired by the
hill climbing-based polyhedron support function. When we
know that a vector does not belong to a given VVR, we also
know to which boundary the vector is on the wrong side. Thus
it is natural to check if the vector belongs to the VVR of the
feature lying in the other side of this boundary. The problemis
when many boundaries are violated; the choice of the neighbor
must not be arbitrary, because infinite loops may occur. The
experience has shown that the following choice always reaches
the right VVR whatever the beginning feature:

• Big spheres: choose any neighbor of the good side of a
boundary.

• Torus: go prior to big spheres nearby if one of them is
in the right side of its limit plan. Otherwise, go to small
sphere.

• Small sphere: take the torus nearby whose common limit
with the small sphere is the farthest from the given vector.

The infinite loop case, although it has never been met in
real situation, could be easily detected aftern tests,n being
the number of features of the STP-BV, then the algorithm
would behave like the naive method that always finds the right
feature.

There is no theoretical complexity calculation about this
method, but we can evaluate it toO(

√
n), because if the

algorithm behaves like expected, it is a march guided by
a potential field in a two-dimensional manifold divided into
cells.

3) The underlying polyhedron convex hull method: It is an
acceleration technique to the guided march method. It works
in two steps; the first is to find the support point for the
underlying polyhedron convex hull, that can be considered to

be always a vertex on the polyhedron. The next step is to start
the guided march method from the small sphere corresponding
to the support vertex.

The idea of this method is that the support point in the
STP-BV for a given direction can not be far from the farthest
small sphere in this direction. We know also that the farthest
vertex according to a given direction corresponds exactly to the
farthest small sphere, so if we find this vertex, we can be sure
to start the guided march from the closest small sphere. Hence,
the underlying polyhedron structure allows us to accelerate the
farthest point search. However, we can not use directly the
STP-BV underlying polyhedron (i.e. the polyhedron having
the center of the small spheres as vertexes which are linked
by edges by keeping torus patches’ topology); because there
are some extreme cases where it is not convex. Thus we have
to use the underlying polyhedron convex hull recomputed from
the small sphere centers, and use it to find the farthest vertex.

The VVR of the small sphere is always strictly contained
in the VVR of the corresponding vertex of the underlying
polyhedron convex hull. It means that the second step, starting
from a small sphere, never reaches another one, and it can find
the searched feature at distance less than 4 from the initial
small sphere.

The complexity of this method depends on the complexity
of the first step, as the second one has constant time. There
exists aO(log n) complexity polyhedron support function
computation method (see a thorough discussion in [10]) but it
does not take profit from the time-space coherence. Thus we
use the Hill climbing method which is easily adapted to keep
the latest support data.

D. Support functions for STP-BV features

Any previously chosen feature search method returns a
sphere (big or small) or a torus.

The support function of a sphereSc,l (with a centerc and
a radiusl) is known and simply computes in:

sSc,l
(v) = c +

l.v

‖v‖
For the case of torus features, we must keep in mind that

the word “torus” is a misnomer. Indeed, we consider in the
torus the inter-penetrated part [1]. We can compute the support
function of this entire portion, but we know that the belonging
test automatically excludes the peaks. The torus portion isthe
result of a big sphere rotation around an edge, this makes the
center of the big sphere form a circleC. The support point of
the considered part for a vectorv is given by the sum of the
support point of the circleC according to the vector−v, and
the support point of the big sphere with radiusR and centered
in the originO according to the directionv; that is:

sA(v) = sC(−v) + sSO,R
(v) = sSsC(−v),R

(v)

IV. I MPLEMENTATION AND PERFORMANCES

Previous theoretical results have been implemented inC++
into a packaged library called SPQ for Smooth Proximity
Queries. It is has been implemented as a standalone code so



that it can be integrated to several applications, but it has
been optimized to run in real-time since our primary focus
is to use it in the low-level control of humanoid robots. Data
structure is also enhanced to contain additional information for
exploiting space and time coherencies (e.g. last visited feature,
last distance witness points, etc.). The library is modular
enough to be extended to any other convex geometry [9] and
BVs such as OBB, AABB, Spheres, STP-BV, PCH-BV, and
superellipsoids (SE-BV).

A. Performance study

At first, performances of the support function methods have
been tested separately. All the tests have been run on a
Pentium 4 PC 3.8GHz and 2GO RAM. We chose a complex
object of 1100 vertexes (that represent a link of the HRP-2
humanoid robot) as bench; in order to have a variable number
of features, we simply changed the ray of the big sphere of
the STP-VB. These tests allow to confirm that the complexity
of the support function computation is sub-linear.
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Fig. 6. Performance for the guided march based function support computa-
tion.
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Fig. 7. Performance for the underlying polyhedron convex hull based function
support computation.

The Fig. 6 illustrates the obtained performance of the
guided march method which allows to confirm itsO(

√
n)

complexity. Fig. 7 illustrated obtained results of theunderlying

polyhedron convex hull method which allows to confirm its
O(

√
n) complexity with a better multiplier coefficient.

0 500 1000 1500 2000 2500
3

4

5

6

7

8

Number of features

C
om

pu
ta

tio
n 

T
im

e 
(µ

se
c)

Fig. 8. Performance for a complete GJK proximity queries between similar
pairs of STP-BV.

In the following we undergo the performance evaluation of
the complete proximity query. We used an object having 300
vertexes, which is also an HRP-2 link. Fig. 8 shows obtained
performances of the overall query without spatial and temporal
coherence (i.e. the worst case) and using the guided march
method for computing the support function of the STP-BV.
The precision asked for the query is10−6 (which can be
quoted in meters for our case studies, clearly this is far too
much from what one requires to avoid collision in robotics!).
Again the overall complexity is sub-linear relatively to the
complexity of the object.

B. Comparative study

Table I relates obtained performance results in terms of
number of proximity queries for different convex volume
bounded objects. This object has been covered with three
different bounding volumes: the polyhedral convex hull (PCH),
our proposed STP-BV, and a best fit convex superellipsoid
(CSE-BV). The support function for the SE is computed
analytically1 and not obtained from its polyhedral approxi-
mation. Tests have been performed on randomly positioned
and oriented pairs of the same object.

TABLE I
NUMBER OF PAIR PROXIMITY QUERIES PER SECOND.

PCH-BV STP-BV CSE-BV

PCH-BV 795123

STP-BV 584567 525394

CSE-BV 319216 286368 187429

The results show that faster queries can be obtained using
pairs of PCH-BV but without guarantee of distance gradient
continuity. For this object, it appears that STP-BV queries
would require 39% more time then PCH-BV whereas CSE-
BV queries would require 145% more time than PCH-BV. But
this is only a tendency that is likely to change depending on

1This is the object of another paper.



the complexity of the object and the application requirements.
In another hand, there is actually a benefit in using a double
STP-PCH BV representation for each robot’s link. The reason
why this is interesting appears clearly for humanoid auto-
collision avoidance. For a distance query between a given pair
of bodies, it is better to choose an STP-BV representation
for the body containing less STP-BV features, and a PCH-
BV representation for the other. This reasoning certainly
extends to any pair of bodies, i.e. including the objects of
the environment. This also means that both BV need to be
stored in memory to use the appropriate one at will.

V. A PPLICATION EXAMPLES

Our method is packaged into aC++ code and integrated to
a humanoid avatar interactive simulator framework we have
developed. It can also be used as a standalone code to be
integrated in any other application. The Fig. 9, is a screen
snapshot of the video attached to the paper. In this simulation,
all the 31 links of the HRP-2 humanoid robot are randomly
moving and proximity distances are computed between all
pairs of objects.

Fig. 9. STP-BV covered HRP-2 links, distance query is performed between
all pairs of links.

For the example of the Humanoid HRP-2, we are able to
compute necessary pairs for auto-collision (here we took the
worst case) in less then0.7msec of time. When temporal and
spatial coherences are taken into account, this time reduces to
0.5msec for the overall robot. This means that we are able to
integrate auto-collision into the low-level control.

The Fig. 10 illustrates pairs of distance proximity queries
for a virtual avatar, here, the obtained STP-BV are rendered
in transparency to see the under-covered avatar. The distance
is illustrated by the (red) line linking computed witness points
for each selected pairs of body.

VI. CONCLUSION

We present a substantial improvement of our STP bounding
volume [1] which allows fastC1 proximity queries between
convex shapes. Provided that (i) any object can potentiallybe
decomposed into a collection of convex sub-objects, and (ii)
it suffices that only one object be strictly convex to ensure
continuous gradient of the distance function [3], this method
has certainly potential use in robotics, humanoids and virtual
avatar whole-body free-collision motion generation control or

Fig. 10. Auto-collision avoidance with a virtual avatar.

optimization. For the time being, we proved that the obtained
performance are satisfactory and the implementation is robust.
As future work, this software will be further code-optimized
and integrated in a low level control of a real humanoid robot
as a continuation of [6].
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