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Abstract

This paper is devoted to a stability study of a walking gait for a biped.
The walking gait is periodic and it is composed of a single-support
phase, a passive impact, and a double-support phase. The reference
trajectories are described as a function of the shin orientation versus
the ground of the stance leg. We use the Poincaré map to study the
stability of the walking gait of the biped. We only study the stability
of dynamics not controlled during the single-support phase, i.e., the
dynamics of the shin angle. We then suppose there is no perturba-
tion in the tracking of the references of the other joint angles of the
biped. The studied Poincaré map is then of dimension one. With a
particular control law in double support, it is shown theoretically
and in simulation that a perturbation error in the velocity of the shin
angle can be eliminated in one step only. The zone of convergence
in one step is determined. The condition of existence of a cyclic gait
is given, and for a given cyclic gait, the stability condition is also
given. It is shown that due to the given control law for the overactu-
ated double-support phase, a cyclic motion is practically guaranteed
to be stable. It should be noted it is possible for the biped to reach a
periodic regime from a stopped position in one step.

KEY WORDS—walking biped, orbital stability, passive im-
pact, dynamically stable gait, Poincaré return map, simulation
results

1. Introduction

The stability of bipedal locomotion is currently an active re-
search area. In the case of a biped with feet, some authors
introduce criteria based on no knocking over around the ex-
tremities of the feet during the walking gait (see, for exam-
ple, Goswami 1999; Vukobratovic et al. 1990). Generally, the
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sole of the support foot has its surface completely in contact
with the ground (see, for example, Hirai et al. 1998; Löffler,
Gienger, and Pfeiffer 2003). During the gait there is no un-
deractuated phase for the biped.

To understand more deeply the effects of gravity on bipedal
locomotion, some authors have studied planar bipeds without
feet for a dynamically stable gait composed of single-support
phases and passive impacts (see, for example, Grishin et al.
1994; Roussel, Canudas-de-Wit, and Goswami 1998; Aoustin
and Formal’sky 2003; Chevallereau, Formal’sky, and Djoudi
2003; Chevallereau et al. 2003). The main difficulty is that
in the single-support phase, the biped is underactuated. There
are more degrees of freedom than actuators. Then, during
this phase there is no equilibrium point, which is asymptot-
ically stable. The actuated joints define a configuration for
the biped, at each time. However, the biped’s equilibrium is
mainly connected to gravity force. To study the stability of
such bipeds, it is necessary to introduce the concept of or-
bital asymptotical stability, usually studied with the Poincaré
method. The Poincaré method consists of studying the stabil-
ity of the Poincaré return map, the application, which gives
the intersection of the orbit with a surface for a given previ-
ous intersection point. In Cheng and Lin (1996), a lineariza-
tion of the Poincaré return map is analytically calculated. In
Goswami, Espiau, and Kermane (1997), the linearization is
numerically calculated. In Grizzle, Abba, and Plestan (2001),
this concept of orbital stability and the Poincaré method was
extended to systems with impulse effects, considering that the
impact of the swing leg with the ground is usually impulsive.
In Grizzle, Abba, and Plestan (2001), the dimension of the
Poincaré return map is reduced to one. This fact greatly simpli-
fies the study. Some other authors increased the convergence
to the periodic orbit by modifying the step length or the incli-
nation of the trunk from one step to the next step (see Aoustin
and Formal’sky 2003). Other authors used a double-support
phase, which also allows the stability to be increased (see
Grishin et al. 1994; Zonfrilli, Oriolo, and Nardi 2002). In
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Grishin et al. (1994), a bipedal dynamic gait with a single
support and a double support is designed for a five-link biped
mechanism, developed in the Moscow Lomonosov State Uni-
versity. From their experiments, the authors show that the
reference motion of the biped in single support can be de-
scribed as a simple inverted pendulum, and they choose the
final configuration of the double-support phase, to design a
cyclic gait in spite of tracking errors. In Zonfrilli, Oriolo, and
Nardi (2002), a walking gait with single-support and double-
support phases is designed for a biped without feet. This ref-
erence gait is tested with the robot Sony AIBO. With this
strategy, using a double-support phase for which the biped is
overactuated, they are able to start from a stop phase.

A stability study is proposed in this paper for a walking
biped with an underactuated single-support phase and a non-
instantaneous double-support phase. The stability study is re-
stricted to a one-dimensional space by using the Poincaré re-
turn map and supposing that the actuated joint reference tra-
jectories are exactly followed. The main idea in the definition
of the reference trajectory is that the actuated joint variables
are polynomial functions in the absolute orientation angle of
the biped. With an appropriate control law in double support,
we show how this phase can improve the stability of the walk.
For example, we determine the conditions of existence of a
cyclic stable motion with double support. In the case of a
cyclic stable motion, we determine a zone in the Poincaré re-
turn map, where the convergence from the current bipedal’s
state to the cyclic nominal gait is realized in one step. Also,
we give a graphical representation that allows us to choose
among an infinite number of possible motions, obtained for
different dynamics of the absolute orientation angle of the
biped.

The paper is organized as follows. The planar model and
its dynamical model are presented in Section 2. In Section 3
we describe the reference motion and a reduced dynamic
model associated with this reference motion. The control of
the double-support phase is presented in Section 4. The sta-
bility study is proposed in Section 5. The simulation results
are presented in Section 6. Finally, Section 7 contains our
conclusion and perspectives.

2. Presentation of the Planar Biped and Its
Dynamical Model

2.1. Biped Presentation

The object of our study is a five-link biped prototype, RAB-
BIT, which is the result of a joint effort by several French re-
search laboratories, grouped in a ROBEA project from CNRS
(Chevallereau et al. 2003). RABBIT is currently developed in
Grenoble. It is conceived to be the simplest mechanical struc-
ture that is still representative of human walking. RABBIT
is guided around a central column by means of a radial bar.
Its motion can then be considered restricted to the vertical

sagittal plane. It has a trunk, two identical legs with knees,
but no feet. There are four identical motors, which drive the
haunches and the knees. The maximal value of their torque
is 150 N m. Its control system comprises a computer, hard-
ware servo-systems, and power amplifiers. The parameters of
the four actuators with their gearbox reducers are specified in
Table 1. The lengths, masses, location of the center of mass,
and inertia moment of each link of RABBIT are collected
in Table 2 with the help of Figure 1. Each actuated joint is
equipped with one encoder to measure the joint position.

Figure 1 presents a diagram of the studied biped with some
notations. We note that � = [�1, �2, �3, �4]T is the torque
vector, δ = [δ1, δ2, δ3, δ4]T are the actuated joint variables,
q = [α, δT]T are the joint variables with the orientation of the
biped in space, and X = [qT, xt , yt ]T are the configuration,
orientation, and position vectors, where (xt , yt ) is the position
of the center of gravity of the trunk. Parameters si (i = 1, 5)
determine the distance between the centers of mass Ci (i =
1, 5) of the shins and the knee joints for each leg. Parameters
si (i = 2, 3, 4) determine the distance between the centers
of mass Ci (i = 2, 3, 4) of the trunk, both thighs, and the
hip joint. Ri = [Rix, Riy]T (i = 1, 2) are the ground reaction
forces on feet 1 and 2, respectively.

2.2. Dynamic Model

The dynamic model is determined from the Lagrange equa-
tions. Its general form is

A(q)Ẍ +H(q, q̇) = D�� +D1(q)R1 +D2(q)R2. (1)

The inertia matrix A(7 × 7) of the biped is symmetric and
positive definite. The centrifugal, Coriolis, and gravity effects
are represented by the vectorH(7×1). The torque vector� is
taken into account by the fixed matrix D�(7 × 4), consisting
of zeros and units. Each matrix Dj(7 × 2) (j = 1, 2) is a
Jacobian matrix between foot velocity and allows us to take
into account the ground reaction on each foot. If the point foot
j is in the air, then Rj = [

0 0
]T

.
If the point foot j is in contact with the ground, the position

variables X, the velocity variables Ẋ, and the acceleration
variables Ẍ are constrained. In order to write these relations,
we define the position, velocity, and acceleration of the point
foot j in an absolute frame. The position of the point foot j
is denoted dj (X). By differentiation of dj (X) we obtain the
relation between the velocity Vj = (Vjx Vjy)

T of the point
foot j , and Ẋ, given by

Vj = Dj(q)
TẊ (j = 1, 2). (2)

Dj(7 × 2) (j = 1, 2) are the same matrices as in eq. (1).
Using another differentiation, we obtain the relation be-

tween the acceleration V̇j = (V̇jx V̇jy)
T of the point foot j ,

and Ẍ, given by

V̇j = Dj(q)
TẌ +Hcj (q, q̇) (j = 1, 2). (3)
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Table 1. Parameters of Actuators
Brushless Motor Mass Gearbox Rotor Inertia

+ Gearbox in (kg) Ratio (kg m2)
Haunch and Knee 2.82 50 3.32 × 10−4

Table 2. Parameters of RABBIT
Moment of Inertia (kg m2)

Physical Parameters Mass Length Center of Mass Around the Center of
of Each Body (kg) (m) Locations (m) Mass, Ci (i = 1, ..., 5)

Bodies 1 and 5: shin 3.32 0.40 s1 = s5 = 0.127 I1 = I5 = 0.0484
Body 3: trunk + actuators in each haunch 16.3 0.625 s3 = 0.13 I3 = 1.9445
Bodies 2 and 4: thigh + actuators in knee 4.1 0.40 s2 = s4 = 0.163 I2 = I4 = 0.0693
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Fig. 1. Diagram of the five-link biped: generalized coordinates, torques, forces applied to the leg tips, center of mass locations.
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Hcj (2 × 1) is equal to

∂DT
j
Ẋ

∂q
q̇.

Then the contact constraints for the point foot j with the
ground are given by the three vector–matrix equations:




dj (X) = constant

Vj = Dj(q)
TẊ = 0

V̇j = Dj(q)
TẌ +Hcj (q, q̇) = 0

(j = 1, 2). (4)

These vector–matrix equations (4) mean that the position of
the point foot j remains constant, and then that the velocity
and acceleration of the point foot j are null.

3. Definition of a Reference Motion and
Resulting Simplified Model

3.1. General Considerations

To design a walking gait for a biped with finite length for
the feet, we have to take into account torque limitations in
its ankles. Then, a biped without feet, such as RABBIT, can
be viewed as a limit case when the length of the feet tends
to zero. When studying the generation of walking motions
for a biped without feet with a double-support phase, we face
two problems: it is more difficult to obtain the double-support
phase than to obtain a new single-support phase at the im-
pact, and a walk with double support seems to consume more
energy than a walk with instantaneous double support. How-
ever, the study of a walk with double support for a biped
without feet is interesting for two reasons. First, the overac-
tuated double-support phase improves the conditions of the
orbital stability of the walk, as we see in the stability study,
the object of this paper. This property arises, for example, as a
quicker convergence, and even in one step, and as a larger at-
traction domain, and even a convergence from a stop position.
Secondly, the study of the walk of the biped robot RABBIT
is a first stage before studying the walk for a biped with feet,
for which the double-support phase is obvious. Indeed, for
an anthropomorphic walking gait, the double-support phase
usually exists during a cyclic gait (see Devy et al. 2001). So
the results obtained for a walk with a double-support phase
for a simple biped without feet will be available for the case
of a biped with feet.

We consider a walk with a single-support phase, an impact,
and a double-support phase. For this biped, the single-support
phase is underactuated (five degrees of freedom and four ac-
tuators). The strategy used is then to prescribe the reference
trajectories of the four joint variables δj (j = 1, ..., 4) as a
function of the orientation variable of the shin, α. So, for a
given angle α and assuming the perfect tracking of the four

joint variables δj (j = 1, ..., 4), the biped configuration is
completely determined in the single-support phase. The be-
havior of the angular variable α results in the dynamic equa-
tions of the underactuated biped, and depends on the evolution
of the four joint variables δj (j = 1, ..., 4). In the double-
support phase, the biped has three degrees of freedom and
is overactuated. It is then possible to prescribe the reference
trajectories of only three variables: we choose δj (j = 1, 2)
as a function of α, similarly to the single-support phase, and
the angular variable α is defined as a polynomial as a func-
tion of time. With these three variables, the biped’s motion is
completely determined in double support. Note that in the fol-
lowing sections of the paper the subscripts SS andDS denote
single support and double support, respectively.

3.2. Single-Support Phase

The reference trajectories of actuated joints, δi,SS (i = 1, ..., 4)
are defined as polynomial functions of fourth order in α:

δi,SS(α) = ai0 + ai1α + ai2α
2 + ai3α

3 + ai4α
4

(i = 1, ..., 4)
. (5)

We have chosen fourth-order polynomials for δi,SS(α) because
we wanted to prescribe initial and final positions and velocities
and an intermediate configuration for the biped. Furthermore,
if δi,SS(α) (i = 1, ..., 4) are exactly tracked, we are sure to
reach the final configuration for the final value of α.

The temporal evolution of α results from the dynamics of
the biped. Supposing δi,SS (i = 1, ..., 4) are exactly tracking
δi,SS(α) (i = 1, ..., 4), given by eq. (5) and applying the the-
orem of the total angular momentum in S (the contact point
between the stance leg tip of the biped and the ground; see
Figure 1), and writing the expression of angular momentum,
we can define a simplified dynamic model on α (6), which
then describes the biped’s motion in the single-support phase:



σ̇ = −Mg (xG(α)− xS)

α̇ = σ

f (α)

. (6)

Here,M is the biped mass, g is the acceleration of gravity, and
xG(α) and xS(α) are respectively the horizontal component of
the positions of the biped’s mass center and of the foot of the
stance leg. σ is the angular momentum around S. The second
equation of eq. (6) comes from the expression of the angular
momentum given by

σ =
4∑
k=1

fk(δi)δ̇k+f5(δi)α̇. (7)

Then, by assuming the exact tracking of the reference tra-
jectories, coefficients fk(δi) (k = 1, ..., 5) only depend on
the biped parameters and α, since δi = δi(α) (i = 1, ..., 4)
only depend on α, and since δ̇i = δ̇i (α, α̇) = ∂δi(α)/∂α α̇



Pr
oo

f C
op

y

Miossec and Aoustin / Biped Walk with Underactuated and Overactuated Phases 5

(i = 1, ..., 4) obtained by time differentiation of eq. (5) only
depend on α and α̇. Finally, eq. (7) can be written σ = f (α)α̇,
as in eq. (6).

3.3. Simplified Model for the Passive Impact

The impact is considered rigid, passive, instantaneous, with
impulsive ground reactions, and with a null restitution coef-
ficient. At the impact instant, an inversion of leg role is per-
formed. Impact equations can be obtained through integration
of the matrix motion equation (1) between the infinitesimal
time, just before and just after impact, considering here that
both feet remain fixed on the ground after impact. The torques
supplied by the actuators at the joints, Coriolis, and gravity
forces have finite values, and thus they do not influence an
impact (see, for example, Formal’sky 1982, 1997). Conse-
quently, the impact equations can be written in the following
matrix form:

A(q)
(
Ẋ+ − Ẋ−) = D1(q)IR1 +D2(q)IR2 . (8)

The notation “+” (“−”) means just after (before) impact. The
term IRj (IRjx , IRjy ) is the vector of the magnitudes of the im-
pulsive reaction in leg j (j = 1, 2). From some manipulations
detailed in Appendix A of this full impact model with rela-
tion (4) and supposing that reference trajectories are exactly
tracked, we can obtain the following relation:

α̇+ = bα̇− (9)

Term b depends on inertia parameters, on the biped configu-
ration at impact, and on ∂δi(α)/∂α (i = 1, ..., 4) just before
impact.

3.4. Double-Support Phase

We define the reference trajectories of δi,DS = δi,DS(α) (i =
1, 2) as polynomial functions of α:

δi,DS(α) = ai0 + ai1α + ai2α
2 + ai3α

3 (i = 1,2). (10)

Taking into account that the biped is overactuated,α is defined
as a polynomial of time:

αDS(t) = a0 + a1t + a2t
2 + a3t

3. (11)

Then, the motion of the biped is defined by δi,DS (i = 1, 2)
and αDS(t). A third-order polynomial is chosen for δi,DS(α)
(i = 1, 2) and α(t), to prescribe initial and final positions
and velocities for the biped. Since the biped is overactuated,
supposing δi,DS(α) (i = 1, 2) and α(t) given by eqs. (10) and
(11) are exactly tracked, all the dynamics are fixed in double
support. That is, all the accelerations, the torques, and the
reactions can be determined from the choice of the evolution
of δi,DS(α) (i = 1, 2) and α(t). The complete model (1) in
double support will be used to perform those calculations.
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Fig. 2. Evolution of joint positions δ1, δ2, δ3, and δ4 as a
function of time during one step, for the optimal motion
considered in this paper. It is possible to observe the single
support before the discontinuity due to exchange of legs, and
the double support after the discontinuity.

3.5. Determining the Reference Motion

We have to find all the coefficients of the polynomial func-
tions (5), (10), and (11). Taking into account that the motion
is periodic and is continuous between each phase leads to re-
lations between polynomial coefficients. It is then possible to
reduce the number of parameters to 18 (see the principle of
this reduction in Miossec and Aoustin 2002b). An optimiza-
tion process is used to choose these 18 parameters so that an
energy criterion is minimized and physical constraints are sat-
isfied during the walk (such as no slipping, no take off of the
feet, and limit torque). More details for the motion definition
are given in Miossec andAoustin (2002a) and Miossec (2004).
In the following sections, we consider one set of polynomial
coefficients obtained using this method. We represent in Fig-
ure 2 the evolution of the polynomials δi,SS(α) (i = 1, ..., 4)
and δi,DS(α) (i = 1, 2) as δi,DS(α) (i = 3, 4) obtained by
the inverse geometric model, for the walking motion consid-
ered in this paper. We also represent in Figure 3 the evolution
of torques needed to follow this motion, obtained by the in-
verse dynamic model. We can see that, for this cyclic motion
obtained by optimization, the double support approximately
represents 10% in time of a single support, for RABBIT.

4. Control of αDSαDSαDS in Double Support

We only consider the control of α in double support, since
we study only the dynamics of α. To only consider the dy-
namics of α, we consider that all actuated joints are exactly
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Fig. 3. Joint torques as a function of time for the optimal
motion considered in this paper. Leg 1 is the support leg
during single support and the front leg during double support.

tracking their reference motions.1 The control law for α in
double support that we use is a time optimal control. Indeed,
it consists of applying the maximal acceleration α̈ possible
to converge to α̇c (the notation “c” designates the reference
cyclic motion), and when α̇c is reached, to follow this cyclic
reference motion. The expression of this control is

α̈ =


α̈max(α, α̇) if α̇(α)− α̇c(α) < 0
α̈min(α, α̇) if α̇(α)− α̇c(α) > 0
α̈c(α, α̇) if α̇(α)− α̇c(α) = 0.

(12)

Here, in eq. (12) α̈max(α, α̇) and α̈min(α, α̇) are, respectively,
the maximal and minimal possible accelerations to satisfy the
physical constraints (no slipping, no take off of the legs, torque
limits). The same principle of control is used in Grishin et al.
(1994) where a cyclic gait with a double-support phase and a
single-support phase is designed for a biped with telescopic
legs. In the double-support phase, the largest commanded ac-
celeration possible is prescribed. They choose this maximal
acceleration as a constant that allows the feet to remain on the
ground.

Here we propose to determine these maximal and minimal
accelerations at each instant using the dynamic model. We
show the way to determine α̈max(α, α̇) and α̈min(α, α̇). The
physical constraints considered are the following:

1. The reader can refer to Grizzle,Abba, and Plestan (2001), where the authors
address the problem of a control of the actuated joints that can justify the
restriction of the stability study to the dynamics which are not controlled in
single support.




Riy ≥ Riy,min (i = 1, 2)

−fmaxRiy ≤ Rix ≤ fmaxRiy (i = 1, 2)

−�max ≤ �j ≤ �max (j = 1, ..., 4).

(13)

Riy,min > 0 is the minimal normal ground reaction. fmax is a
maximal friction coefficient, which we choose for the ground.
The inequality fmax < f leads to the assumption to be inside
the friction cone defined by f , the real limit friction coeffi-
cient. Our goal is first to write these constraints explicitly with
respect to α, α̇, and α̈, and then to extract the more restrictive
constraints on α̈.

Combining eqs. (4) and (10) into eq. (1) we obtain seven
relations between α, α̇, α̈, Rix , Riy , and �j :

Aα(α)α̈ +Hα(α, α̇) = D�� +D1(α)R1 +D2(α)R2. (14)

The calculation of matrices Aα and Hα are detailed in Ap-
pendix B.We want to determine the eight unknownRix ,Riy ,�j
as functions of α, α̇ and α̈, whereas there are only seven equa-
tions in eq. (14). The biped is overactuated in double support.
There are three degrees of freedom and there are four torques.
Then, there are an infinity of solutions that we parametrize
by R2x (see Miossec and Aoustin 2002a or Miossec 2004
for a justification of this choice). So we obtain the following
equations:

[
R1xR1yR2y�

T
]T = B(α)α̈ + C(α, α̇)+D(α)R2x. (15)

The expressions of B(α)α̈, C(α, α̇), and D(α) are presented
Appendix C. With the seven equations (15) we can rewrite the
14 constraint inequations (13) as

E(α)α̈ + F(α, α̇)+G(α)R2x + P ≤ 0. (16)

The calculation of E(α), F(α, α̇), G(α), and P is presented
Appendix D.
α̈min(α, α̇) and α̈max(α, α̇) are then obtained by solving the

two following simplex problems (see Dantzig 1963 for infor-
mation about this type of problem):




α̈min(α, α̇) = min
α̈,R2x

α̈

E(α)α̈ + F(α, α̇)+G(α)R2x + P ≤ 0

α̈max(α, α̇) = max
α̈,R2x

α̈

E(α)α̈ + F(α, α̇)+G(α)R2x + P ≤ 0.

(17)

We now present a representative result of the control in the
phase plane (α, α̇) (see Figure 4; all angles of figures are in
radian). For a given initial velocity, less in the module than
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Fig. 4. Representation in the double-support phase of
evolution of α for cyclic motion and for a converging motion
starting from null velocity.
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Fig. 5. Representation of α̈min and α̈max as functions of α
and α̇.

the initial cyclic one, the minimal acceleration is applied and
we can see in Figure 4 that the (α, α̇)motion converges to the
cyclic one. Then, after the intersection with the cyclic motion,
it exactly follows the cyclic motion. We then have a null error
at the end of the double-support phase.

Figure 5 presents the constraints α̈min and α̈max with respect
to the two parameters α and α̇. These constraints α̈min and
α̈max only depend on α and α̇. Figure 6 shows α̈c for the cyclic
motion and the corresponding evolution of α̈max(α, α̇) and
α̈min(α, α̇). We must bear in mind that the real constraints α̈min
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Fig. 6. Evolution of acceleration for the cyclic motion α̈c
with minimal and maximal accelerations possible α̈min and
α̈max with respect to α.

and α̈max depend on two parameters, and so in Figure 6 these
constraints will change with the change of motion followed
in double support.

5. Stability Study of the Reference Motion

We only study the stability of the dynamics of α. We sup-
pose that the actuated joint trajectories are exactly followed
(this assumption is a good approximation if we consider a
sufficiently efficient control, without too many important per-
turbations). The choice of studying the stability of dynamics
of α is due to the fact that it is the less stable dynamics, since it
is the only dynamics not controlled during the single-support
phase. The dynamics of α consist in eqs. (6) in single support,
in discontinuity given by eq. (9) at impact and by α dynamics
in double support depending on its control only, presented in
Section 4. For this stability study, we use the Poincaré map.

We first present the Poincaré stability study in Section 5.1.
Then in Section 5.2, for a desired final velocity α̇fDS we de-
fine a zone of the phase plan of double support that is a zone
from which it is possible to converge to this desired final ve-
locity. We also show that the control presented in Section 4 is
a control that allows the convergence to a desired final veloc-
ity α̇fDS from the corresponding zone defined. In Section 5.3
we give some necessary and sufficient conditions for the ex-
istence of a cyclic motion depending on the dynamics of α,
and we also give a sufficient condition of stability of such
a cyclic motion with the control law presented in Section 4.
When such a cyclic stable motion exists, we also show that
the zone of finite time convergence in double support for the
cyclic final velocity α̇c,fDS of a reference motion defines a
one-step convergence zone. Finally, in Section 5.4 we present
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a graphical representation that allows us to see all the possible
cyclic stable motions depending on the dynamics of α, and
the corresponding domains of attraction.

All the results presented in this section are obtained under
the following hypotheses.

(H1) α̈min and α̈max are always defined. This hypothesis means
that it is always possible to satisfy constraints (13). In
reality, to satisfy (H1) we consider a subspace where
(H1) is satisfied. We can see in Figure 5 that the restric-
tion applies for high values of α̇. Furthermore, we see
in Section 5.4 that the more restrictive constraints are
not those of double support but those of single support.

(H2) We consider the cases α̇ ≤ 0. The consequences of (H2)
will be that α is always decreasing as a function of time,
that the final velocity of double support α̇fDS is less than
the initial velocity of double support α̇iDS . Moreover, a
motion of α in the phase plan representation will move
from right to left.

(H3) α̈min < 0 when α̇ = 0.

5.1. Presentation of Poincaré Stability Study

The Poincaré map consists of representing the evolution of
the state of a cyclic motion at a characteristic instant of a sys-
tem from one period to the following. For the walk consid-
ered here, with the previous assumptions, the Poincaré map
is a function from only a one-dimensional space to a one-
dimensional space (see also Aoustin and Formal’sky 2003;
Grizzle, Abba, and Plestan 2001; Chevallereau, Formal’sky,
and Djoudi 2003). In this paper we represent the Poincaré map
of α̇ and we observe it at the beginning of the double-support
or single-support phases. In the Poincaré map, a cyclic motion
is represented by an invariant point, and this cyclic motion is
stable if the slope at this point is between −1 and 1. In the
following, we present the control of α in the double-support
phase so that convergence to the cyclic motion is as fast as
possible. Then we determine the double-support zone of con-
vergence to a given final velocity of the double-support phase.
Then, we deduce the conditions in α of the existence of a sta-
ble cyclic reference motion for a given final velocity of the
double-support phase. Then, we present a method to see if
a cyclic stable motion exists, and how to choose the more
stable one, between different possible values of the final ve-
locity of the double-support phase. Finally, we present the
Poincaré map of α̇iDS and α̇iSS for the motion obtained by the
optimization process presented in Section 3.5.

5.2. Determination of the Finite Time Convergence Zone in
the Double-Support Phase

In this section we define the zone of convergence in one step
in double support. We give a first definition:

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
−2

−1.5
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−0.5

0

0.5

α̇ = 0

α̇min (α, α̇fDS )

α̇max (α, α̇fDS)

α = αiDS

α

α̇

Fig. 7. Representation of the surface Sd in the phase plan.

DEFINITION 1. For a given velocity at the end of double
support α̇fDS , we consider the two functions α̇min(α, α̇fDS)
and α̇max(α, α̇fDS) defined as follows:




α̇min(α, α̇fDS) =
αfDS∫
α

α̈min(α, α̇)

α̇
ds + α̇fDS

α̇max(α, α̇fDS) =
αfDS∫
α

α̈max(α, α̇)

α̇
ds + α̇fDS

(18)

α̇min(α, α̇fDS) and α̇max(α, α̇fDS) are the evolutions of α̇ that
give the final point (αfDS, α̇fDS) when applying the minimal
and maximal possible accelerations, respectively. These func-
tions are obtained by reverse integration as a function of α.
These functions are the solutions of the differential equations

α̈ = α̈min(α, α̇)

α̈ = α̈max(α, α̇).
(19)

Now we can define a surface in the phase plane (α, α̇)
by closing the contour composed of α̇min(α, α̇fDS) and
α̇max(α, α̇fDS).

DEFINITION 2. For a given velocity at the end of dou-
ble support α̇fDS we consider the surface Sd delimited by
α̇min(α, α̇fDS), α̇max(α, α̇fDS), α̇ = 0 and α = αiDS .

This surface is represented in Figure 7. It effectively con-
stitutes a closed surface since α̇min(α, α̇fDS) obviously inter-
sects α̇max(α, α̇fDS) at the point (αfDS, α̇fDS) and α̇ = 0 also
obviously intersects α = αiDS at the point (αiDS, 0). Further-
more, we consider (H2); therefore, both α̇min(α, α̇fDS) and
α̇max(α, α̇fDS) will fatally intersect α̇ = 0 or α = αiDS .
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The following proposition proves that whatever a point in-
side the surface Sd , it is possible to find a motion satisfying the
constraints that allows us to converge to the point (αfds, α̇f ds).

PROPOSITION 1. ∀(α, α̇) ∈ Sd, ∃ a motion αDS(t) that goes
from (α, α̇) to (αfDS, α̇fDS) while still verifying constraints
(13). Furthermore, ∀(α, α̇) ∈ {(α, α̇), such that (α, α̇) /∈
Sd and α̇ < 0 and α < αiDS}, � αDS(t) that allows us
to go from (α, α̇) to (αfDS, α̇fDS).

Proof. The demonstration is based on the construction of a
motion that will converge to (αfds, α̇f ds). We design this mo-
tion as applying the maximal and minimal accelerations suc-
cessively.We first apply α̈min. The motion is solution of the first
differential equation of eq. (19). The function α̈min satisfies the
Lipschitz condition;2 therefore, the two solutions are unique,
and if they have different initial conditions, they will never
meet. So the current solution will never intersect α̇min(α, α̇fDS)
or α̇ = 0 since we supposed (H3), or α = αiDS since we
supposed (H2). It will then intersect α̇max(α, α̇fDS). Finally,
by applying α̈max the motion will converge to (αfDS, α̇fDS).
Of course, this motion is generally not the unique one that
allows convergence for a given starting point inside Sd to
(αfDS, α̇fDS). Usually there will be an infinity of such mo-
tions. If we now consider an initial point (α, α̇) ∈ {(α, α̇),
such that (α, α̇) /∈ Sd and α̇ < 0 and α < αiDS} with the
fact that two solutions of the same differential equation (19)
with different initial conditions will never intersect, if (α, α̇)
is under Sd (above Sd) the solution by applying the maximal
(minimal) acceleration possible will never reach (αfDS, α̇fDS),
otherwise it would mean that they have been an intersection
with α̇max(α, α̇fDS) (α̇min(α, α̇fDS)), which is impossible.

The following proposition means that the convergence to
(αfDS, α̇fDS) can be obtained with control (12) and with an
appropriate reference motion.

PROPOSITION 2. If a reference motion αc(t) such that when
αc = αiDS , α̇c = α̇c,iDS and when αc = αfDS , α̇c = α̇c,fDS
satisfy constraints (13) ∀α ∈ [αfDS, αiDS], then ∀α ∈ Sd the
control law (12) allows convergence to (αfDS, α̇fDS).

Proof. First, such a αc(t) motion is inside Sd since if it was
not the case, it would not satisfy the constraints to arrive in
(αfDS, α̇fDS). Then by the same way as in the proof of Propo-
sition 1, it can be shown that ∀(α, α̇) ∈ Sd , control (12) will
intersect αc(t) and then converge to (αfDS, α̇fDS).

There exists an infinity of such reference cyclic mo-
tions αc(t) satisfying the constraints and limit conditions
(αiDS, α̇iDS) and (αfDS, α̇fDS). Also, the choice of this refer-

2. Let us consider the domain defined by all the possible (α̈, R2x) that sat-
isfy constraints (13). α̈min will be the minimum value of α̈ that belongs to
this domain. The boundaries of this domain are linear functions of α̈ and
R2x , whose coefficients are continuous in function of α and α̇, see eq. (13).
Therefore, this domain is convex and continuous as a function of α and α̇.
Then α̈min is continuous in α and α̇ and satisfies the Lipschitz condition. The
continuity of α̈min and also α̈max can be observed in Figure 5.

ence motion does not have any influence on the convergence
to (αfDS, α̇fDS) with this control.

5.3. Condition of Existence and Stability of a Cyclic
Stable Walk

We have characterized the double-support phase in the pre-
vious section. In order to characterize the stability of the
complete walk, we first characterize the single-support phase.
Chevallereau, Formal’sky, and Djoudi (2003) obtained inter-
esting results of stability for a gait composed of a single-
support phase and an impact only. An analytic relation is
written between the initial velocity of the biped and its ve-
locity during the step. Then, from this result and taking into
account the impact we can deduce the existence of an analytic
relation between the velocity at the beginning of the double-
support phase α̇iDS and the velocity at the end of the previous
double-support phase α̇fDS :

α̇iDS = a(α̇fDS). (20)

The calculation of function a() is detailed in Appendix E.
Chevallereau, Formal’sky, and Djoudi (2003) also provide

a condition of the existence of a periodic stable gait, and give
the bounds of the convergence domain in single support. In
particular, they found that the initial velocity of the single-
support phase must be more than a minimum in order to avoid
the biped falling back. They also provide a way to determine
the maximal velocity allowed at the beginning of single sup-
port in order to satisfy ground constraints. We use both of
these results in order to determine the domain of attraction
of single support. We denote α̇fDS,min this lower bound and
α̇fDS,max this upper bound.

From the previous results of both phases it is possible to
obtain the following proposition.

PROPOSITION 3. For a given α̇c,fDS ∈ [α̇fDS,min, α̇fDS,max], a
cyclic motion exists if and only if α̇c,iDS ∈ [α̇iDS,min, α̇iDS,max]
where α̇c,iDS = a(α̇c,fDS) and α̇iDS,min(α̇c,fDS) =
α̇min(αiDS, α̇c,fDS) and α̇iDS,max(α̇c,fDS) = α̇max(αiDS, α̇c,fDS).

This proposition means that cyclic motions exist for α̇c,fDS
if α̇c,iDS obtained from α̇c,fDS , by the single support, impact
and change of legs is inside the zone of double support that
can converge to (αfDS, α̇c,fDS).

Proof. For this proof we study the Poincaré map of α̇fDS , i.e.,
we study the evolution of α̇fDS(n+1)with respect to α̇fDS(n),
where n indicates the nth step. Let us consider α̇c,iDS(n +
1) = a(α̇c,fDS(n)). First, to show the necessary and suffi-
cient condition of existence of a cyclic motion, we consider
the case when α̇c,iDS(n + 1) ∈] − ∞, α̇iDS,min[∪]α̇iDS,max, 0[.
In this case, from Proposition 1 we know that we will not
converge to (αfDS, α̇c,fDS). The condition α̇c,iDS(n + 1) ∈
[α̇iDS,min, α̇iDS,max] is then a necessary condition. In the case
where α̇c,iDS(n+1) ∈ [α̇iDS,min, α̇iDS,max], from Proposition 1, a
motion exists (for example, the cyclic motion used in the proof
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of Proposition 1) which allows us to reach (αfDS, α̇fDS), and
then to obtain a cyclic motion. The condition α̇c,iDS(n+ 1) ∈
[α̇iDS,min, α̇iDS,max] is then also a sufficient condition.

Furthermore, when a cyclic motion exists for a velocity
α̇fDS , there is an infinity of motions during the double sup-
port, which allow us to obtain this final velocity of double
support α̇fDS from the initial velocity in double support α̇iDS .
We consider in the following only one cyclic motion in double
support αcDS(t) from the infinity of cyclic motions, defined by
α̇c,fDS and α̇c,iDS . This cyclic motion satisfies constraints (13).
Such a cyclic motion is obtained by the optimization algo-
rithm presented in Miossec and Aoustin (2002b), but other
methods could be imagined to obtain a cyclic motion for α.

Proposition 4 gives a sufficient condition of stability of a
cyclic motion.

PROPOSITION 4. Let αc,DS(t) be a cyclic motion which sat-
isfies eq. (13), if α̇c,iDS ∈]α̇iDS,min, α̇iDS,max[, then the cyclic
motion is stable with the control law (12).

Proof. To prove this proposition, we study the Poincaré
map of α̇fDS . Let us consider the case where α̇c,iDS ∈
]α̇iDS,min, α̇iDS,max[. Then it is always possible to find a closed
interval for which there will be convergence to α̇c,fDS by the
same control as in the proof of Proposition 1. For example,
we can consider the interval [(α̇iDS,min+ α̇c,iDS)/2, (α̇iDS,max +
α̇c,iDS)/2]. For sufficiently small errors in the neighborhood of
α̇c,fDS we have α̇iDS(n+1) ∈ [(α̇iDS,min+α̇c,iDS)/2, (α̇iDS,max+
α̇c,iDS)/2] and then from Proposition 2 we have the conver-
gence to α̇c,fDS .We have then a local stability around the cyclic
motion.

When α̇c,iDS = α̇iDS,min or α̇c,iDS = α̇iDS,max the cyclic
motion is at the limit of the stable cyclic motions. In this
case it is necessary to look at the slope of the Poincaré map
at the cyclic point, to determine if there is stability. It is
for this reason that we have to consider the open interval
]α̇iDS,min, α̇iDS,max[ for the stability condition. Furthermore, in
all the cases where α̇iDS ∈]α̇iDS,min, α̇iDS,max[ we obtain α̇c,fDS
at the end of the double support, which corresponds to a case
of convergence in one step. The sufficient condition of stabil-
ity α̇c,iDS ∈]α̇iDS,min, α̇iDS,max[ is not valid for all the control
laws. For example, for a proportional derivative control law
in double support, for an error at the beginning of double sup-
port, the final error at the end of double support will not be
null. We do not obtain the convergence in one step, and we
have to determine the slope of the Poincaré map to know if
the cyclic motion is stable. However, generally, the slope of
the Poincaré map will be close to a null slope. In the case of
a finite time control and a cyclic motion, which satisfies the
sufficient condition of stability α̇iDS ∈]α̇iDS,min, α̇iDS,max[, we
always have a cyclic stable motion and a zone of convergence
in one step around this cyclic motion.

5.4. A Method to Visualize All the Cyclic Stable Walks

Generally, there will be an infinity of values of α̇c,f ds for which
there exists a cyclic stable motion. In this section we give a
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Fig. 8. Representation of α̇iDS,max(α̇fDS), α̇iDS,min(α̇fDS) and
α̇iDS = a(α̇fDS) with global attraction domain in α̇fDS DgfDS ,
global attraction domain in α̇iDS DgiDS , one-step convergence
domain in α̇fDS D1fDS , one-step convergence domain in α̇iDS
D1iDS . The cyclic motion represented by point (α̇c,fDS, α̇c,iDS)
has been arbitrarily chosen.

representation that will allow us to visualize all the possible
cyclic stable motions, and will give a few stability criteria to
choose among all these possibilities. These criteria will be
in competition with the energy consumption criterion of the
optimization process presented in Section 3.5.

The method consists of superposing the graphs of
α̇iDS,max(α̇fDS) α̇iDS,min(α̇fDS) and α̇iDS = a(α̇fDS). The two
first functions will be calculated by a numerical integration
at each point whereas the third results from the evaluation of
one integral only (see eqs. (48) and (49) in Appendix C). We
present an example of these graphs in Figure 8. The case of
this figure is in fact that obtained by the optimization process
presented in Section 3.5.

We give here some basic comments about Figure 8, but the
reader could refer to Miossec (2004) for more comprehensive
comments. This graph first allows us to see all the possible
cyclic motions for a given walking motion, when considering
different dynamics for α. Cyclic motions are represented in
this graph by points on the equation α̇iDS = a(α̇fDS). From
Propositions 3 and 4, a cyclic stable motion must satisfy
α̇c,iDS ∈]α̇iDS,min, α̇iDS,max[. Therefore, cyclic stable motions
will be represented by points on the graph α̇iDS = a(α̇fDS)

when α̇iDS,min(α̇fDS) < a(α̇fDS) < α̇iDS,max(α̇fDS); that is,
when the graph of function α̇iDS = a(α̇fDS) is between the
graphs of functions α̇iDS,max(α̇fDS) and α̇iDS,min(α̇fDS). We can
then easily see the zone of existence of cyclic motions. In fact,
in the case presented, it corresponds to the admissible zone of
single support, denoted DgfDS .
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It is also possible to read the convergence domain in one
step and the global convergence domain for both Poincaré
representations of α̇iDS and α̇fDS . It also allows us to see that
here the convergence domains are limited by constraints in
single support. It would also be possible to determine the
number of steps needed to converge from the extremities of
the attraction domains. In particular, since the curve α̇iDS =
a(α̇fDS) is very close to α̇iDS,min(α̇fDS) the convergence to
cyclic motion will be slow when the speed of the walk is too
quick compared to the speed convergence when the speed
of the biped is too slow. This leads to the idea it would be
good to equilibrate distance between curve α̇iDS = a(α̇fDS)

and curves α̇iDS,max(α̇fDS) and α̇iDS,min(α̇fDS) and enlarge the
possible zone as far as possible.

All the criteria presented here could be used in the opti-
mization process presented in Section 3.5 in order to obtain
more stable motions and quicker convergence.

We have given conditions for the existence of a control law
that can give a stable walk with a one-step convergence zone.
We have shown that the control law (12) with a reference mo-
tion that satisfies constraints allows us to obtain stability when
possible and to obtain the largest one-step convergence zone
possible. We have given a graphical representation to choose
the speed of evolution of α during the walk from a stability
point of view. However, we have not addressed the choice of
motion αDS(t) among an infinity. In fact, this choice has no
influence on the stability of the motion with the proposed con-
trol law. All that is important is that it must satisfy constraints
(13). The choice of this motion of α in double support can
then be done only in order to minimize an energy criterion,
for example. We have obtained such a reference motion by
the optimization process presented in Section 3.5.

6. Simulation Results

We present here some stability results for a reference mo-
tion we obtained by the optimization process presented in
Section 3.5. This reference motion satisfies the constraints in
double support.

We show here the Poincaré return map of αiSS (Figure 10)
and of αiDS (Figure 9) with the control law (12) presented.
For better representation of the Poincaré return map, we rep-
resent the opposite of α̇, since α̇ < 0. These two Poincaré
maps do not contain more information than Figure 8, but the
information is clearer.

We can see that in both Poincaré maps the null slope zone
is large. This zone guarantees the convergence from the attrac-
tion domain in a finite number of steps. The attraction domain
is limited on the Poincaré return map of α̇iSS for small veloc-
ities by the fall back of the biped during the single-support
phase (because the initial speed is too small) and for high ve-
locities by the torque limitation in the single-support phase.
The attraction domain for the Poincaré map of α̇iDS is not lim-
ited in small velocities. This means that the biped can start
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Fig. 9. Representation of the Poincaré map at the beginning
of double support.
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Fig. 10. Representation of the Poincaré map at the beginning
of single support.

walking from stop. Furthermore, due to the large one-step
convergence zone, this start phase leads directly to the cyclic
motion in one step. The limitation at high speed is the same
as in the other Poincaré return map. It is also interesting to
see that the zone of convergence in the one step of the α̇iDS
Poincaré return map is far larger for small speeds than high
speeds. We can see in Figure 8 that it is because the distance
between the cyclic motion and the constraints is very unequal.

The motion studied here has been optimized only with
an energy criterion, without stability constraints. The work
presented has only been to constat the good stability of this
motion. In future work, it would be interesting to take into
account the stability in the motion optimization.

7. Conclusion

We have studied the dynamics of α, which are the less stable
dynamics, since they are not controlled during single support.
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We have given an efficient control law in double support for
the stabilization of these dynamics. We have shown that an in-
finity of cyclic motions exists. It is important to note that those
cyclic motions must satisfy some constraints. We determined
the one-step convergence zone to a cyclic motion and showed
that this zone can always exist when the cyclic motion is sta-
ble. We have seen in simulation results for a given cyclic mo-
tion that the one-step convergence zone is quite large and even
allows start from stop, and that the global attraction domain is
even larger. The existence of the one-step convergence zone is
due to the presence of the overactuated double-support phase,
well exploited with the control law presented. We thus see the
interest of the double-support phase in the walking gait of a
biped to obtain a good stability. However, a drawback is that
the control used is sensitive to model errors, since the acceler-
ation constraints depend on the model. To increase robustness,
we could increase the security distance with constraints, or use
a force sensor measure. Furthermore, the possible commuta-
tion of walking speed by changing the dynamics in α could
be used to stop the biped, or finally could be exploited in or-
der to commute easier between different motions obtained by
optimization. Another perspective is to include the size of the
one-step convergence zone or the global attraction domain as
the optimization criteria in the motion generation, in order to
increase stability.

Appendix A: Calculation of Vector bbb

During the walking gait the legs have a symmetrical role from
one half-step to the next half-step. Then, from a practical point
of view, this walking gait can be studied only on one half-step
if the exchange of the leg role is taken into account. A half-
step is then composed of the sequence of the single-support
phase, the impact, the exchange of the leg role, and the double-
support phase.After the impact and before the exchange of the
leg role, let the velocity vectors be Ẋ+

int . After the exchange of
the leg role, let the velocity vector be Ẋ+. The exchange of the
leg role leads to the following relations for each coordinate of
vectors Ẋ+ and Ẋ+

int :




α̇+ = α̇+
int + δ̇+

1int + δ̇+
3int − o. tδ

+
4int

δ̇+
1 = δ̇+

4int

δ̇+
2 = δ̇+

2int + δ̇+
3int

δ̇+
3 = −δ̇+

3int

δ̇+
4 = δ̇+

1int

ẋ+
t

= ẋ+
t int

ẏ+
t

= ẏ+
t int .

(21)

Let us introduce matrix J to define the exchange of the
leg role. We have then the following relation between Ẋ+ and
Ẋ+
int

Ẋ+ = J Ẋ+
int
, (22)

where matrix J (7×7), composed of 0 and 1, is deduced from
eq. (21):

J =




1 1 0 1 −1 0 0
0 0 0 0 1 0 0
0 0 1 1 0 0 0
0 0 0 −1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



. (23)

We have the following relations to describe the impulsive
impact:

A(Ẋ+
int

− Ẋ−) = D1IR1 +D2IR2 (24)



DT

1 Ẋ
+
int = 0

DT
2 Ẋ

+
int = 0

(25)

DT
1 Ẋ

− = 0. (26)

System (25) means we suppose a double support after impact.
The last vector–matrix equation (26) means the point foot of
the stance leg is fixed just before impact with D1(7 × 2). We
can rewrite eq. (26),

DT
115
q̇− +DT

167

[
ẋ−
t

ẏ−
t

]
= 0 (27)

where
[
ẋ−
t

ẏ−
t

]T
represents the velocity of the trunk mass

center just before the impact.DT
167

is composed of all lines and
columns 6 and 7 of matrix DT

1 , and DT
115

is composed of all
lines and columns 1–5 of matrix DT

1 . DT
167

is in fact equal to
a (2 × 2) identity matrix. Equation (27) can then be rewritten
simply as

[
ẋ−
t

ẏ−
t

]
= −DT

115
q̇−. (28)

If we assume a perfect tracking of the joint angles δi=δi(α)
we have the four relations, δ̇i (α, α̇) = ∂δi/∂αα̇ (i = 1, ..., 4).
Then with these four relations and using the vector–matrix
equation (27) we can write the velocity vector Ẋ−

Ẋ− =
[

I5×5

−DT
115

]
q̇− (29)
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with

q̇− =




1
∂δ1

∂α

∂δ2

∂α

∂δ3

∂α

∂δ4

∂α




α̇− = q∗α̇− (30)

where I5×5 is a (5 × 5) identity matrix.
Then Ẋ− is proportional to α̇−.
From impact equations (24), (25), and (26) and eqs. (23),

(29), and (30) it is possible to obtain vectors Ẋ+, IR1 and
IR2 as a function of α̇−. First we solve the impact equation to
determine Ẋ+

int , IR1 , and IR2 as functions of Ẋ−. From eqs. (24),
(25), and (26) we can obtain

Aimpact


 Ẋ+

int

IR1

IR2


 =


 AẊ−

0
0


 (31)

where

Aimpact =
[
A −DR

DT
R

0

]
and

DT
R
(4 × 7) = [

D1 D2

]T
. (32)

Then3 
 Ẋ+

int

IR1

IR2


 = A−1

impact


 AẊ−

0
0


 . (33)

We can write the relation between Ẋ+ and α̇− from eq. (33)
using eqs. (23), (29), and (30),

Ẋ+ = J (A−1
impact

)17 17A

[
I5×5

−DT
115

]
q∗α̇− (34)

where (A−1
impact )17 17 is the submatrix of A−1

impact corresponding
to lines 1–7 and columns 1–7.

Finally, we can conclude that the expression for the coef-
ficient b is the first component of Ẋ+

α̇+ = bα̇− (35)

with

b = J1(A
−1
impact

)17 17A

[
I5×5

−DT
115

]
q∗ (36)

where J1 is the first line of J .

3. A mathematical study of the invertibility of matrix Aimpact has proved
that it is singular only when DR is not of rank 4. This occurs when ∀ i =
1, ..., 4 δi = 0 or π , which means that all the links of the legs are in the
same direction. The physical interpretation of this situation is that there is an
infinity of possible impulsive ground reactions at impact corresponding to
solutions with different repartitions of impulsive ground reactions between
both feet along the direction of the legs. This singularity is never obtained
since it corresponds to an impossible situation for a walking motion.

Appendix B: Calculation of MatricesAα andHα

We assume that the biped is in double support and that the
tracking of the joints is perfect, δi = δi(α) (i = 1, 2). First,
using geometric relations these assumptions allow us to write
vector X = [

α δ1 δ2 δ3 δ4 xt yt
]T

explicitly as a
function of α:

X = X(α). (37)

Let be matrix DR(7 × 4) = [
D1 D2

]
. In double sup-

port, the velocity of both leg tips being zero we can obtain Ẋ
as a function of α, and α̇ from the second relation of eq. (4)

DT
R
(q)Ẋ = 0. (38)

Let us introduce the new matricesDR13(3×4) correspond-
ing to lines 1–3 ofDR andDR47(4 × 4) corresponding to lines
4–7 of DR to rewrite eq. (38)

DT
R13


 α̇

δ̇1

δ̇2


 +DT

R47



δ̇3

δ̇4

ẋ

ẏ


 = 0 (39)

where

[
ẋ

ẏ

]
represents the velocity of the trunk mass center.

Using this vector–matrix equation (39), the inverse matrix4

of DT
R47

and the relation δ̇i (α, α̇) = ∂δi/∂αα̇ (i = 1, 2), we
obtain

Ẋ(α, α̇) =




1 0 0
0 1 0
0 0 1

−DT−1
R47
DT
R13







1
∂δ1

∂α

∂δ2

∂α


 α̇. (40)

Let matrixHc(7 × 1) =
[
Hc1(q, q̇)

Hc2(q, q̇)

]
. The third relation

of eq. (4) for j = 1 and j = 2 can be merged in only one
vector–matrix equation,

DT
R
(q)Ẍ +Hc(q, q̇) = DT

R13


 α̈

δ̈1

δ̈2




+DT
R47



δ̈3

δ̈4

ẍ

ÿ


 +Hc(q, q̇) = 0. (41)

4. A mathematical study of the invertibility of matrix DR47 has proved that
it is singular only when δ4 = 0 or π , which corresponds to a completely
stretched or folded up leg. Those singular cases are classical for manipulator
robot. Those singularities are avoided by the motion generation process; then
the reference motions obtained are far from it. In the present case where
the joint reference trajectories δi (α) i = 1, ..., 4 are exactly tracked, those
singularities are then avoided.
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Using eq. (41), X(α), Ẋ(α, α̇), the inverse matrix of DT
R47

and the relation δ̈i (α, α̇, α̈) = ∂δi/∂αα̈+ ∂2δi/∂α
2α̇2, we can

write Ẍ(α, α̇, α̈),

Ẍ(α, α̇, α̈) =




1 0 0
0 1 0
0 0 1

−DT−1
R47
DT
R13










1
∂δ1

∂α

∂δ2

∂α


 α̈

+




0
∂2δ1

∂α2

∂2δ2

∂α2


 α̇

2


 +




0
0
0

−DT−1
R47
Hc(α, α̇)


 .

(42)

Then, using the previous result (42) in the dynamic model
(1) of the biped, we obtain

Aαα̈ +Hα(α, α̇) = D�� +DR

[
R1

R2

]
(43)

where Aα = A(α)




1 0 0
0 1 0
0 0 1

−DT−1
R47
DT
R13







1
∂δ1

∂α

∂δ2

∂α




and Hα = H(α, α̇) + A(α)




1 0 0
0 1 0
0 0 1

−DT−1
R47
DT
R13







0
∂2δ1

∂α2

∂2δ2

∂α2


 α̇

2

+




0
0
0

−DT−1
R47
Hc(α, α̇)


 .

Appendix C: Expressions of Matrices B,
C and D

These three matrices are calculated by inverting5 eq. (14)

B(α) = Dtot (α)
−1Aα(α)

C(α, α̇) = Dtot (α)
−1Hα(α, α̇)

D(α) = Dtot (α)
−1D2x(α)

(44)

withDtot = [
D1 D2z D�

]
, whereD2x is the first column

of D2 and D2z is the second column of D2.

5. A mathematical study of the invertibility of matrix Dtot has proved that
it is singular only when both feet have the same position along the x-axis.
A physical interpretation of this situation is that the repartition between both
feet of the vertical ground reactions can be chosen as we do yet for the
horizontal components. This singular case will never occur in our study since
it is incompatible with a walking motion.

Appendix D: Calculation of Matrices E, F, G
and P

Inequation (13) can be rewritten in term of matrices as

M



R1x

R1y

R2y

�


 +NR2x + P ≤ 0 (45)

with M =




0 −1 0
0 0 −1

−1 −fmax 0
0 0 −fmax
1 −fmax 0
0 0 −fmax

06×4

04×3 −I4×4

04×3 I4×4




N =




0
0
0

−1
0
1

08×1




P =




R1y,min

R2y,min

06×1

−�max18×1


 . Here, 0i×j is an (i × j)

matrix composed of zeros, 1i×j is an (i×j)matrix composed
of ones, and Ii×i is an (i × i) identity matrix.

By replacing R1x , R1y , R2y , and � in inequation (45) with
their expression obtained from eq. (15) we obtain inequa-
tion (16) with,

E = MB(α)

F = MC(α, α̇)

G = MD(α)+N

. (46)

Appendix E: Calculation of Function a()a()a()

The results presented here are obtained from Chevallereau,
Formal’sky, and Djoudi (2003) and are adapted to our motion
definition. In order to determine the relation between α̇iDS
and α̇fDS , we first start from the relation for single support
between α̇iSS and α̇f SS

α̇f SS = −
√
ψ(αfSS)+ f (αiSS)2α̇2

iSS

f (αfSS)
(47)

ψ(α) = −2

α∫
αiss

Mg(xG(µ)− xS)dµ. (48)

Then the impact equation (9) gives the relation between
α̇iDS and α̇f SS , and we have α̇iSS = α̇fDS since there is no
impact nor leg exchange between the end of double support
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and the beginning of single support. Finally, we obtain

α̇iDS = −b
√
ψ(αfSS)+ f (αiSS)2α̇2

fDS

f (αfSS)
. (49)
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