
IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 1

Strictly convex hulls for computing continuous
gradient proximity distances

Adrien Escande, Sylvain Miossec, and Abderrahmane Kheddar, Member, IEEE

Abstract— This paper presents a new method for strictly con-
vex hulls (i.e. bounding volume) generation made by assembling
patches of spheres and toruses (STP-BV). This bounding volume
allows to compute proximity distances with the guarantee of their
gradients’ continuity. This bounding volume is computed off-
line; it slightly over-covers the polyhedral convex hull of the
geometrical form. Given a pair of convex objects, having only
one of them strictly convex (i.e. STP-BV covered) is proved to
be sufficient to guarantee gradient continuity of the proximity
distance. The distance computation is based on the closest
features of the underlying polyhedral convex hull obtained with
V-Clip or any other algorithm. The suggested algorithm is
exemplified through a free-collision (including free self-collision)
optimization-based humanoid posture generation.

Index Terms— Continuous gradients of proximity distances,
strictly convex hulls, sphere-torus patches, bounding volume, free
collision posture generation.

I. INTRODUCTION

THE presented work has been motivated from the fol-
lowing problem: in [1], a planner for humanoid acyclic

motion is proposed. This planner is composed mainly of
two interrelated modules: (i) a stance tree explorer module
and (ii) a posture generation module. The stance for each
step of the planner is obtained from an optimization-based
posture generation using C-FSQP [2]. In a wider context,
optimal trajectories in robotics can be computed from solving
an optimization problem on a cost function. This function
(generally involving minimum energy consumption, speed or
precision, etc.) is defined together with a set of constraints
that encompasses joint limits, contacts and path tracking in
the Cartesian space, stability, etc. Interested readers may refer
to [3] [4] and their inside bibliography sections for more
details on trajectory optimization and optimal control theory
applied in robotics. In these two quoted papers however, and
in most we have read, constraints such as robot self-collision
and non desired collisions with the environments have not
been taken into account. In other works, they are not taken
into account deeply unless the context or the robot structure
is very specific.

In fact, by using FSQP, or any other available optimization
software, collision avoidance might be easily integrated as a
constraint among others, nonetheless providing additional soft-
ware development efforts. Indeed, one may consider writing
these constraints using any available proximity distance algo-
rithm which returns signed proximity distances separating two

Manuscript received June xx, 2007; revised Xxxxxxx 00, 200X. This work
was supported by XX.

A. Escande, S. Miossec and A. Kheddar are with the JRL-CNRS, Japan.

bodies (such as V-Clip1 or SOLID2); the interested reader may
refer to the recent exhaustive and excellent review books [5],
[6]. Consequently, using self-collision and collision avoidance
constraints in optimization software does not appear really
problematic (again not considering the implementation issues
which may reveal to be not that simple). Not having collision
between two bodies is equivalent to keep the separating
distance always positive. Hence, the matter of evaluating the
proximity constraints is merely the execution of the proximity
computation between the considered pairs of bodies (if the
two bodies belong to the same robot, it is called self-collision
avoidance).

However, a problem arises with the very fact that most
optimization software require the gradients of the criteria and
the constraints to be continuous with respect to the parameters
(here robot joints and eventually trajectories’ parameters) -
and even the Hessian3. The proximity distance between poly-
hedrons does not meet such a requirement. Yet, there exist
optimization algorithms not requiring continuous gradients,
such as the Bundle methods [7], but relatively fast convergence
properties are still open research problems.

The main motivation of this work is to guarantee that com-
puted gradients of proximity distance are continuous function
of the parameters in order to use fast optimization methods.
Therefore, a method has been devised and implemented to
ensure C1 property of the proximity distance. This results in
a better convergence of the optimization software. Although,
the motivation of this work originates from a robotic context,
the proposed method extends to all problems where proximity
distances requiring continuous gradient is crucial enough to
be considered (for instance in control theory). The problem
of ensuring continuous distance’s gradient has, to the best
knowledge of the authors, never been treated before and
the proposed method is totally new and original. Continuity
properties of the distance have been merely discussed or even
assumed in previous works. For example, in the work proposed
in [8] [9], where this problem has been addressed in a 2D case,
it has been claimed that the distance between convex objects is
smooth and thus the gradient is continuous. The latter assertion
is not always valid unless one object is strictly convex, the
former depends on the continuity properties of both objects’
surfaces, as we will demonstrate in section II. The flaw in the
demonstration is to suppose that witness points of the distance
are smooth functions of the parameters. Assumption about the

1http://www.merl.com/projects/vclip/
2http://www.dtecta.com/
3In almost all optimization software, approximation of the Hessian appears

to be robust enough.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 2

witness points’ continuity is always implicitly made in papers
computing distance’s gradient whereas the strict convexity of
at least one object is not addressed. It is only in [10] that
the non differentiability (and non-convexity) of the distance
between convex bodies is well addressed and used with non-
smooth analysis in the context of sensory-based planning. Our
approach, on the contrary, draws solution to get rid of the non-
differentiability.

This paper is organized as follows: first, evidence of prox-
imity distances’ gradient discontinuity is presented by means
of a very detailed example. A set of theorems proving some
general properties about the distance continuity is explained,
they are to be used in the proposed solution. This is followed
by section III where a new method which builds off-line a
strictly convex hull (i.e. a strictly convex bounding volume)
from 3D point clouds is described along with its construction
steps. Section IV deals with how distances are computed
on the basis of a proximity distance algorithm such as V-
Clip [11], and is followed by a short section V describing
how the gradient of the proximity distance is computed. Some
implementation details are described in section VI. The paper
ends by exemplifying the proposed method in a collision-
free (including self-collision) static posture generator for the
humanoid robot HRP-2.

II. PROXIMITY DISTANCE CONTINUITY

A. Problem definition and notations

In this section we consider the distance between two convex
objects O1 and O2. This distance will be denoted δ. The
relative position between the two objects is parameterized by
6 scalars (3 for the rotation, 3 for the translation). q is the
vector made of these scalars.
δ is a function of q and we will study its continuity.
We call witness points a pair of points of O1×O2 that are at the
distance δ. Under certain conditions that we will expose after
(see 2.1), this pair is unique for a given relative position. Thus
we can define pmin(q) = (p1 min(q), p2 min(q))

T the function
that associates the pair of witness points to each q.
Additionally, the surface of each object can be described
by a function of two parameters (for example, in spherical
coordinates). Let u be the 4-dimensional vector of these two
times two parameters, and r1 and r2 these functions for O1

and O2 (we define as function from a subset of IR4 to IR3 to
simplify the writing even though both of them are functions
from a subset of IR2 to IR3).
Witness points being on the objects’ surfaces, we define
umin as the function of q that returns the vector u of these
points. Denoting by R(q) the rotation matrix parametrized by
q, and by T (q) the translation vector, we have pmin(q) =
(r1 (umin(q)) , R(q)r2 (umin(q)) + T (q))

T

Finally, we define f(q, u) = r1 (u) − R(q)r2 (u) + T (q) the
distance vector between the the two points parametrized by u,
so that

δ(q) = min
u
‖f(q, u))‖ = ‖f (q, umin(q))‖ (1)

Fig. 1. A triangle above a plane for a position (θ, ϕ). Dashed triangle is the
triangle at the position (θ, ϕ) = (0, 0)

B. Evidence of gradient discontinuities

A planar example is given in [10]. Let us have a look at
the distance between a triangle T , part of a given polyhedral
mesh, and a plane P in 3D, figure 1. We consider the initial
position where the triangle is above the plane and parallel to
it, and we attach an orthogonal frame F to T with its z-axis
collinear to P’s normal vector. Each point Pi, i ∈ {1, 2, 3}
of the triangle thus has the coordinates (xi, yi, 0), and the
equation of P is z = −z0. For the sake of clarity and without
loss of generality, we can assume that x1 < x2 < x3 and that
∀i �= j ∈ {1, 2, 3}, yi �= yj .
T rotates around the x-axis (resp. y-axis) with the angle θ
(resp. ϕ). When θ = ϕ = 0, T is parallel to P . First rotation
is around x-axis
Let us then define three (signed) distances di (θ, ϕ) = d(Pi, T)
We have

di = −xi sin ϕ + yi sin θ cos ϕ − z0

∀ θ,ϕ, δ = d(T ,P) = min
i∈{1,2,3}

di (2)

We also define Di = di − di+1 (subscribts are considered
modulo 3). For example, we have

δ = d1 ⇔ d1 ≤ d2 and d1 ≤ d3 ⇔ D1 ≤ 0 and D3 ≥ 0

It is sufficient to show the discontinuity by restricting −π
2 <

θ < π
2 and −π

2 < ϕ < π
2 , which moreover is the case since T

is part of a polyhedron and therefore the inside triangle will
not be considered for distance computation. In particular, we
thus have cos ϕ > 0
We use j instead of i + 1 mod 3 for convenience.
∀ i ∈ {1, 2, 3},

Di < 0 ⇔ (yi − yj) sin θ cos ϕ − (xi − xj) sin ϕ < 0

⇔ (yi − yj) sin θ cos ϕ < (xi − xj) sin ϕ (3)

If i < j (i = 1 or 2), we have xi < xj and then

(3) ⇔

(
yi − yj

xi − xj

)
sin θ > tan ϕ

If i > j (i = 3), we have xi > xj and then

(3) ⇔

(
yi − yj

xi − xj

)
sin θ < tan ϕ

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 3

(a) distance function δ (b) ∂δ
∂θ

(c) ∂δ
∂ϕ

Fig. 2. Proximity distance function and its gradients corresponding to the figure 1.

Defining Φi (θ) = arctan

(
yi − yj

xi − xj

sin θ

)
we then have

if i < j, Di < 0 ⇔ ϕ < Φi (θ)

if i > j, Di < 0 ⇔ ϕ > Φi (θ)

The same way, we obtain

if i < j, Di > 0 ⇔ ϕ > Φi (θ)

if i > j, Di > 0 ⇔ ϕ < Φi (θ)

and Di = 0 ⇔ ϕ = Φi (θ)

D1 - - - - + + + +
D2 - - + + - - + +
D3 - + - + - + - +
δ / d1 d3 d1 d2 d2 d3 /

To summarize:

δ = d1 ⇔ ϕ ≤ Φ1 (θ) and ϕ ≤ Φ3 (θ)

δ = d2 ⇔ ϕ ≤ Φ2 (θ) and ϕ ≥ Φ1 (θ)

δ = d3 ⇔ ϕ ≥ Φ3 (θ) and ϕ ≥ Φ2 (θ)

The di functions are smooth, so that δ is smooth everywhere in
]−π

2 , π
2 [×]−π

2 , π
2 [but when δ changes from one di to an other,

a discontinuity of the gradient always arises. This situation
corresponds to:

• ϕ = θ = 0,
• ϕ = Φ1 (θ) and ϕ < Φ3 (θ) (⇒ ϕ < Φ2 (θ)),
• ϕ = Φ2 (θ) and ϕ > Φ1 (θ) (⇒ ϕ > Φ3 (θ)),
• ϕ = Φ3 (θ) and ϕ > Φ2 (θ) (⇒ ϕ < Φ1 (θ)).

Let us have a look at these discontinuities when we are on
the curves ϕ = Φi (θ), figure 2:
∀i ∈ 1, 2, 3,

∂di

∂θ
= yi cos θ cos ϕ

∂Di

∂θ
= (yi − yj) cos θ cos ϕ

∂Di

∂θ
∣∣Di=0

= (yi − yj)
cos θ√

1 +

(
yi − yj

xi − xj

)2

sin2 θ

(4)

(4) ⇒
∂Di

∂θ
∣∣Di=0

�= 0 for −π
2 < θ < π

2 since yi �= yj and

cos θ is non-null.
With the same approach, ∀i ∈ 1, 2, 3,

∂di

∂ϕ
= −xi cos ϕ− yi sin θ sin ϕ

∂Di

∂ϕ
= (xj − xi) cos ϕ + (yj − yi) sin θ sinϕ

∂Di

∂ϕ
∣∣Di=0

=
xj − xi

cos ϕ
(5)

(5)⇒
∂Di

∂θ
∣∣Di=0

�= 0 for −π
2 < θ < π

2 since xi �= xj .

C. Strict convexity of a body

Intuitively, a gradient discontinuity occurs when there is a
jump between witness points pairs. This is the case around
a configuration for which there is a non unique witness pair,
such as when an edge is parallel to a face. When objects are
not in collision, non uniqueness of the witness pair is directly
linked to the non strict convexity of the objects: considering
the computation of distance as a minimization problem, this
problem is not strictly convex if both objects are not strictly
convex. Global minimum may thus be reached in several
points. We thus need at least one of the objects to be strictly
convex, while the other may be only convex. Consequences
of the strict convexity of one body are given by the following
theorems:

Theorem 2.1: (Unicity of witness points) There is a unique
pair of witness points if at least one of the bodies is strictly
convex.

Proof: If both objects are not convex, then when their
non convex parts are parallel, there is an infinite number of
witness points pairs.
If one object is strictly convex, on the contrary, supposing the
existence of two distinct witness pairs leads to a contradiction
because another pair can be found in between, for which the
distance is strictly smaller.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 4

Theorem 2.2: The witness points of the minimum distance
between two convex bodies are continuous functions of q if at
least one of the bodies is strictly convex (umin and pmin are
continuous functions of q).

Proof: See Appendix 1.

The following result is then almost straightforward:
Theorem 2.3: The minimum distance between two convex

bodies is a C1 function of q if and only if one of the bodies
is strictly convex.

Proof: Let’s derive δ(q) = ‖f (q, umin(q))‖ with respect
to q:

∂δ

∂q
(q) =

(
∂f

∂q
+

∂umin

∂q
·
∂f

∂u

)T
f

‖f‖

=

(
∂f

∂q
(q, umin(q))

)T
f (q, umin(q))

‖f (q, umin(q))‖
(6)

since
(

∂f
∂u

(q, umin(q))
)T

f (q, umin(q)) = 0

The result is obtained by composition, f being C∞ with
respect to q and of the Ck with respect to u, where k is the
minimum continuity index of the bodies’ surfaces.

So far, we did not require anything of the objects but to
be continuous and convex (strictly for one). However, if the
surfaces of these objects have additional continuity properties,
the distance will benefit of it, as shown by the following
theorems:

Theorem 2.4: If the surface of both bodies are Ck, with
k ≥ 2 then the witness points are Ck−1 function of q.

Proof: Let u0 be the coordinates of the witness points
at q0.

We have
(

∂f
∂u

(q0, u0)
)T

f(q0, u0) = 0 (optimality condition)

which can be rewritten ∂f2

∂u
(q0, u0) = 0.

For a given q0, f2 is the square distance between two points
of the bodies’ surfaces, and thus is a strictly convex function,
which implies ∂2f2

∂u2 �= 0.

Let’s note F (q, u) = ∂f2

∂u
(q, u). F is Ck−1, F (q0, u0) = 0

and ∂F
∂u

(q0, u0) �= 0. Thus u is locally a Ck−1 function of q
(implicit functions theorem). This yields that umin is a Ck−1

function of q.

Theorem 2.5: If the surfaces of both bodies are Ck, with
k ≥ 2 then the minimum distance between them is Ck.

Proof: We use eq. (6) once again.

Note that having C1 surfaces does not improve the conti-
nuity of the distance compared to C0 surfaces as shown by
the following example (see fig. 3).

Let’s consider, in a 2D space, 2 arcs of circle of same
radius R, joining at the origin O of the world frame and being
part of a strictly convex object O1, so that O1 is only C0. θ
denotes the angle between the vertical axis and the symmetry
axis, θ0 the non oriented angle between the diameter of one
circle going through O and the symmetry axis. We consider

(a) C0 case (b) C1 case

Fig. 3. Distance between a plane and a C0 or C1 object.

the distance δ(θ) from this object to a line z = −z0.

δ(θ) =

⎧⎪⎨
⎪⎩

R (cos(θ0 − θ)− 1) + z0 if θ < −θ0,

z0 if −θ0 ≤ θ ≤ θ0,

R (cos(θ − θ0)− 1) + z0 if θ > θ0

(7)

This function is C1, but not C2:

δ′′(θ) =

⎧⎪⎨
⎪⎩
−R cos(θ0 − θ) if θ < −θ0,

0 if −θ0 ≤ θ ≤ θ0,

−R cos(θ − θ0) if θ > θ0

(8)

Now we consider two arcs of circle of radii r and R (R > r),
whose centers are aligned with the origin O. Surface is C1,
and

δ(θ) =

{
R (cos(θ)− 1) + z0 if θ < 0,

r (cos(θ)− 1) + z0 if θ ≥ 0
(9)

And we still have a discontinuity of the second derivative, due
to the change of radius:

δ′′(θ) =

{
−R cos(θ) if θ < 0,

−r cos(θ) if θ ≥ 0
(10)

However the discontinuity is less important in this case: R−r
whereas it was R in the first case.

To sum up the continuity properties of the minimum
distance between two convex bodies:

• the distance is always C0 (even with no convexity as-
sumptions),

• it is piecewise C1 with simple convexity. Discontinuities
of the gradient arise when faces or edges are parallel
(non-strict convexity),

• strict convexity of a body ensures C1 property of the
distance. Discontinuities of higher order arise whenever
there are surface discontinuities,

• additional Ck property of both surfaces yields Ck

smoothness of the distance.

These properties are also true locally. In particular, if witness
points move on the interior of C∞ surfaces, one at least being
strictly convex, the distance is C∞. This is for example the
case when considering the distance between 2 spherical parts
of the bodies.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 5

Fig. 4. Degenerate case where there is an infinity of witness pairs (some
pairs are depicted in gray).

D. Penetration case

The Cn property for n > 0 cannot be reached everywhere
in the penetration case: the distance minimization problem
when penetration occurs is not convex anymore. This implies
that in some configurations there are several (up to a non-
countable infinity, see fig. 4) pairs of witness points. Jumps
between witness pairs are thus inevitable so that there are
gradient discontinuities. We can however keep the results of
the above theorems for a subset of penetration cases. But
first, we need to ensure the continuity properties between the
penetration and non-penetration case: as long as an object is
not totally included in the other one, we define the penetration
distance as the opposite of the distance between the pair of

points verifying the optimality condition
(

∂f
∂u

)T

f = 0 while
being at the minimal distance among the possible pairs (which
is ultimately the same definition as in the non penetration
case). As said before we can have several possible pairs and
consequently jumps of these pairs. This is however not the case
if the penetration depth is less than the minimal curvature of
the penetrating parts of the objects. Under this assumption of
“slight” penetration the previous results hold.
If this assumption is violated, we may then encounter gradient
discontinuities, but it has to be pointed out that configurations
where these discontinuities occur are repulsive: following the
gradient make us going away from them, so they should not
be a problem in most applications where penetration can occur
(like optimization beginning with an unfeasible starting point).

III. SPHERE-TORUS-PATCH BOUNDING VOLUMES

As shown in the previous section, distance discontinuities
arise when there are flat areas in both objects, which is often
the case since most of the applications deal with polyhedrons,
whose edges and faces are not strictly convex. It is thus needed
to round these parts off, while staying close to the original
object in a conservative way.
In this article, we propose a way to build a close bounding
volume on a polyhedron to make it strictly convex. To each
type of feature of the polyhedron we associate our own type of
feature (faces with more than 3 vertices are cut into triangles
for this discussion):

• each vertex is paired with a small sphere of radius r
centered on it,

• each face is covered by part of a big sphere of radius R
that is tangent to the spheres of the 3 vertices,

• each edge is associated to a part of torus whose inner
radius is R and that connects to the 2 big spheres of the
adjacent faces in a C1 way.

We call sphere-torus-patche bounding volume the obtained
object and denote it STP-BV. Each part of sphere or torus

Fig. 5. Sphere construction.

is called feature.
r is the minimal distance between the polyhedron and its STP-
BV, it is a security margin. R controls the maximal curvature
of the STP-BV as well as the maximal margin. It must be at
least the radius of the polyhedron but should be several order
bigger for a better approximation of the polyhedron.

A. Big spheres construction

We consider a triangular face of the polyhedron (fig. 5).
P1, P2 and P3 are its vertices given counterclockwise around
the outer normal vector. T1, T2 and T3 are the corresponding
points where the small spheres are tangent to the big one. C
is the center of the big sphere.
Because of the tangency, C, Pi and Ti must be aligned (i =
1, 2, 3). The problem is reduced to the finding of a sphere of
radius R − r that goes through the three vertices of the face,
and is above the face (direction is given by the outer normal).
There is a unique sphere corresponding to this problem.
Let’s denote u = P1P2, v = P1P3, c = P1C and w = u× v.
w is collinear to the outer normal and points in the same
direction.
C needs to be equidistant to the points Pi and is thus on
the median planes of the edges. We then solve the following
system to find the coordinates of C in the frame (P1, u, v, w):⎧⎪⎪⎨

⎪⎪⎩
u.c = u2/2 (median plan of P1P2)
v.c = v2/2 (median plan of P1P3)
c2 = (R− r)2

c.w < 0 (inner solution)

(11)

We write c = αu+βv+γw to use the fact that w is orthogonal
to both u and w.
The two first equations become a linear system whose solution
is ⎧⎪⎪⎨

⎪⎪⎩
α =

u2v2 − u.v · v2

2(u× v)2

β =
u2v2 − u.v · u2

2(u× v)2

These are the coordinates of the circumcenter of the triangle.
Replacing α and β in the third equation leads to an equation
of degree 2 in γ, which is simply a way of writing the

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 6

Pythagorean theorem in the triangle made by P1, C and the
circumcenter. Only one of its 2 solutions complies with the

fourth equation: γ = −
√

(R−r)2−α2u2−β2v2−2αβu.v

(u×v)2

Of the sphere centered on this point C, we only keep the part
inside the cone defined by vectors CPi and whose apex is C.

B. Toruses construction

Roughly speaking, we obtain the torus above one edge by
rotating the sphere of a neighbouring face around this edge
and keeping the resulting inner volume. The construction is
based on the following result:

Theorem 3.1: The distance between the center of sphere
corresponding to a face, and the median point of one of
its edges depends only of the length l of the edge and is√

(R− r)2 − l2

4

Proof: It is the direct result of the Pythagorean theorem
written for the triangle made of the center of the sphere, the
median point of the edge and one of its end points.

Fig. 6. Torus construction.

The centers C1 and C2 of the two spheres corresponding
to the two neighbouring faces of the edge we consider on
fig. 6 are thus on a same circle centered on I and of radius√

(R− r)2 − l2

4 .
We consider the circle C1 of center C1 and radius R in the
plane defined by C1 and the edge. By construction, this circle
coincides with the sphere centered in C1.
By making it revolve around the edge until it coincides with
the circle C2 of same radius centered in C2 and in the plane
defined by C2 and the edge, we obtain the part of torus we
need. It should be noticed that the torus is not be seen as
the usual donut since its usual small radius is bigger than the
(usual) big one. The part we consider here is on the inner side
of the whole torus as shown in white on the fig 7.

The torus and the spheres coincide in the limit planes
and are perpendicular to those planes. The torus is therefore
tangent to both spheres and the junction between the torus
and one sphere is then C1 and the resulting volume is strictly
convex.

Fig. 7. Torus part. The black and white parts are the portion of torus we
consider, the white surface is the part used in the STP-BV

C. Properties

Theorem 3.2: In the STP-BV, the toruses are tangent to the
small spheres.

Proof: Each torus is obtained by the revolution of a
circle around an edge that is also a revolution axis of the
small sphere, and the circle is tangent to the small sphere.

Theorem 3.3: (Continuity and convexity properties of STP-
BV) The STP-BV is C1 and strictly convex.

Proof: All parts of the STP-BV are C1 and strictly
convex, and are tangent wherever they connect.

STP-BVs are even piecewise C∞ since toruses and spheres
are C∞ surfaces.

Theorem 3.4: (Maximal margin) If a is the length of the
longest edge of the polyhedron, the maximal margin between
the convex hull of the polyhedron and its STP-BV is R −√

(R− r)
2
− a2

12

Proof: The maximal distance between a vertex of the
convex hull and the STP-BV is r.
Since each edge is the revolution axis of its associated torus,
maximal distance is achieved in its median plane, and is equal

to R−
√

(R− r)2 − l2

4 , l being the length of the edge.
For a face, two cases arise regarding the position of the
circumcenter H:

• H is outside of the face and then maximal distance is
achieved on the longest edge of this face,

• H is inside the face. In this case, for a fixed longest length
of the edges, the maximal distance is achieved when the

face is equilateral and is R−
√

(R− r)
2
− a2

12 .

If R is notably bigger than r and a, the expression can be
accurately approximated (Taylor expansion) simply by r.
For example, with the values we typically use in our appli-
cations (a = 10cm, r = 1cm and R = 10m), the maximal
margin is 1.00417cm.

D. Voronoi region

An edge is the revolution axis of both its associated torus
and the spheres of its vertices. Therefore finding the voronoi

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 7

(a) voronoi regions around a vertex. From left to right: vertex with its adjacent faces, small and big sphere ot the STP-BV, voronoi region of the small
sphere, all the voronoi limits around the vertex.

(b) voronoi regions around an edge. From left to right: edge with its adjacent faces and the small spheres attached to the
vertices, STP-BV, voronoi regions of the faces.

Fig. 8. Voronoi regions.

regions in a plane containing this edge is enough to determine
what the limits of these regions are in 3D. In such a plane, a
torus and an adjacent small sphere become two C1-connected
tangent circles in the very same way as in figure 3(b). The
centers of these two circles and the tangency point are on
a same line that is also the boundary of the voronoi region.
With the revolution around the edge, we obtain that the limit
between the voronoi regions of a torus and a small sphere is
thus a cone.

The intersection of any plane Pe perpendicular to an edge
with the big sphere of one of its neighbouring faces and its
associated torus is C1-connected tangent circles. Center of the
first circle is the projection of the center of the big sphere onto
Pe, center of the other circle is the intersection of the edge with
Pe (by construction). Let us notice three particular possible
Pe: the one going through the center of the sphere and the two
others passing through each extremity of the edge. As before,
the line going through the centers of the two circles is the
limit between the voronoi regions of these circles. Therefore
the limit between the regions of a torus and a big sphere is
a plane and according to the previous remark, this plane is
defined by the center of the big sphere and the two extremities
of the edge.

Between a big sphere and a small one, there is a single
common point. Separation of the voronoi regions here is the
line defined by the centers of both spheres. This line is also
part of all the limits between neighbouring voronoi regions.
Illustrations are given with figures 8.

E. Advantages

As stated in theorem 2.5, there is no advantage in having C1

surfaces instead of C0 regarding the distance continuity. Thus
we could have used a bounding volume made only of parts

of spheres, one above each face of the polyhedron. Distance
would have been C1 nonetheless, since the polyhedron would
have been round off. However, STP-BV has the following
advantages on such a bounding volume (that we will call
hereafter SP-BV):

• closer to the original object for a same minimal safety
margin: in case of a sharp edge, sphere of SP-BV would
intersect far from the edge since maximal margin for
SP-BV is 2R (achieved when the polyhedron tends to
a point),

• same complexity of distance computation, since in both
cases we need point-point, point-circle and circle-circle
computation,

• as for voronoi regions, the relationship between STP-
BV and polyhedrons is simpler that between SP-BV and
polyhedrons,

• normal vector is well-defined everywhere along the sur-
face, which is important for gradient computation, es-
pecially when the normal cannot be derived from the
witness points, as it is the case when contact arises (see
section V),

• the minimal curvature radius of STP-BV is r whereas
it is 0 for SP-BV: STP-BV handle thus better the slight
penetration case (see II-D).

Additionally, the jumps of the second derivatives is slightly
smaller for STP-BV than for SP-BV since it is related to the
ratio between the radii of small and big spheres.

IV. COMPUTING PROXIMITY DISTANCES

The main idea to compute the distance between two poly-
hedral objects O1 and O2 is to rely on a classical distance
computation algorithm from which we can retrieve the witness
features (closest pair of features of the two objects) and the

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 8

witness points. We simply add a layer on this algorithm that
associates the closest features of the STP-BVs to these witness
data.
Prior to the calculations, STP-BVs have to be built, as well as
some other data regarding the voronoi regions of the volumes.
These calculations are made off-line for each object.
In this section we will name polyhedral feature a feature of
the object (i.e. a vertex, an edge or a face) and smooth feature
a feature of its STP-BV (i.e. a part of small sphere, big sphere
or torus) to avoid any confusion.

A. Bounding volume construction

Algorithm:Bounding volume construction: Pseudo-code

Data: cloud of points, value of r and R
Result: set of faces with their spheres
-e, e1 and e2: are edges along with an additional vertex
-v,v1,v2 and v3: are a vertices
-s and s′: are spheres data
-vertices: the input set of vertices
-edgeStack: a list of edges along with two vertices,
sorted according to an angle.
-output: a list of triangles and their tangent spheres

BuildVolume()
begin

init(edgeStack, output)
while (!empty (edgeStack)) do

(e, v) ← first(edgeStack)
(e1, e2) ← newEdges(e,v)
push(output, face(e,v))
if contains(edgeStack, e1) then

delete(edgeStack, e1)
else

insert(edgeStack, e1, angleMin(e1))
end
if contains(edgeStack, e2) then

delete(edgeStack, e2)
else

insert(edgeStack, e2, angleMin(e2))
end

end
return output

end
Algorithm 1: Bounding volume construction.

The construction of the bounding volume is depicted in
algorithm 1. It does not rely on the faces of a polyhedron,
but only on its vertices, i.e. it works on a cloud of points from
which it rebuilds faces.
The main idea is similar to the gift wrapping algorithm: we
find a first face whose associated sphere contains all the points
of the cloud and their associated small spheres. We then make
this sphere rotate around the edges of this face until it becomes
tangent to the small sphere of a vertex. The edge and the vertex
form a new face. Its sphere is the only one containing all the
points of the cloud and while being based on the edge, but for

Algorithm:Bounding volume construction intermediate
functions: Pseudo-code

init(edgeStack, faceList);
begin

for each (v1,v2,v3) ∈ vertices3 with vi �= vj do
s ← sphere(v1,v2,v3);
if allPointsInSphere(s) then

for i ∈ {1, 2, 3} do
ei ← edge(vi, v(i+1)[3] ,v(i+2)[3]);
insert(edgeStack, ei, angleMin(ei));

end
push(faceList, face(e,v));
return SUCCESS;

end
return FAIL;

end
end

angleMin(e);
begin

(v1,v2,v3) ← e;
s ← sphere(v1,v2,v3);
for each (v) ∈ vertices− {v1, v2, v3} do

s′ ← sphere(e,v);
if allPointsInSphere(s′) then

a = angle(s, s′, e);
return (a,v);

end
end
return FAIL;

end
Algorithm 2: Bounding volume main sub-functions.

the previous sphere. We then rotate around the edges of this
new face, until we reach a face already computed.

Finding the first face is made by the init function (algorithm
2). Since we can only rotate around a single edge at a time,
it is needed to have the list of edge around which haven’t
yet rotated. Although we could chose any edge from this list
to go for the next step, we select the edge around which
the smallest rotation will be required (the explanation of
this choice is given later on in this section). Therefore, the
edge must be stored with some additional data, so that the
angle can be computed. The edge structure thus contains three
vertices: the two extremities of the edge and an additional one,
corresponding to the third vertex of the face the edge already
belongs to. We now know where the rotation is made from
and in which direction.
The function angleMin takes such an edge structure as input
and returns the rotation angle around this edge, as well as the
vertex for which this angle is reached. The edge list, called
edgeStack in the algorithm pseudo-code, thus contains edge
structures, each of which is paired with a vertex and sorted
according to the value of its associated angle. Updating this list
is the main task of buildVolume, through the classical functions
first, insert, delete and contains. first deletes the element after
reading it.
From an edge and a vertex, defining a face, newEdges simply

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 9

builds two new edge structures which corresponds to the two
egdes of this face, that contain the vertex. If one of these edges
is already in edgeStack, it means that we are coming back to
an existing face, since the edge has already been created. In
this case, the two neighbouring faces of this edge have already
been found and the edge must therefore be removed from the
list. In the opposite case, it must be inserted in the list. An
edge thus appears exactly twice (once for each neighbouring
face): it is built a first time and is later used as a rotation axis
or is built again.
When there is no edge left in the list to be processed, the
algorithm terminates.
sphere returns the sphere of a face described either by three
vertices or by an edge and a vertex, face returns a face along
with its sphere for the same input, and angle computes the
angle between two spheres given an edge, which is the angle
made by the center of these spheres and the midpoint of the
edge.

Fig. 9. Misbehavior of the building algorithm when facing a polygonal face
whose points are on a same circle. The algorithm builds the faces in the order
given by the numbers. When turning around the upper edge of face 6, the
point chosen is not the same as the one chosen when building face 2 from
face 1, resulting in overlapping triangles.

The reason for choosing the edges the way we do is to
ensure robustness of the algorithm regarding numerical errors
in the case of polygonal faces whose vertices are on a same
circle. In this case all vertices should be reached at the same
time when turning around an edge of this face and thus the
vertex with the lowest index would be chosen. However this
is sometimes not the case because of numerical rounding
errors. Different vertices can thus be chosen when we arrive
on the face by turning around different edges, resulting
most of the times in overlapping triangles, which makes the
algorithm fail (see figure 9). To avoid this, we force the
algorithm to finish to cover a polygonal face it already began,
by choosing to turn around the edge with the lowest needed
rotation. We then also avoid to give a threshold that defines
when points are coplanar, and to search for coplanar points
each time there is a rotation around an edge.

Our algorithm computes a kind of convex hull for an object,
as well as the big spheres corresponding to each face of this
hull. From the spheres and the faces, the STP-BV is easily
deduced along with its voronoi regions.
The obtained hull is not the convex hull, for some points of it
may have been ignored because of the curvature of the spheres,
as shown in figure 10 in a 2D example. However, when r tends
to 0 and R becomes infinite, this hull tends to the convex hull
of the cloud of points.

Fig. 10. Difference between the obtained hull and the convex hull in a
2D case. Because of the curvature of the circle, points P5 and P9 and their
associated small spheres are strictly inside the STP-BV and thus not on the
underlaying hull (thick small dashed line) whereas they belong to the convex
hull (thin long dashed line).

Fig. 11. A case where the obtained hull is not convex: for simplicity, we
consider an isosceles triangle ABC and look at it in its symmetry plane.
Circle centered in A is the small sphere of this vertex, plain circle centered
in I is the torus of BC and plain big circle is the sphere corresponding to
the face. Dashed circles correspond to the same spheres and torus whose radii
have been decreased by r. Any point in the dark area may be accepted by the
covering algorithm when turning around BC while it is above the previous
face.

Remark: The obtained hull may even be non convex in
very rare particular cases involving very thin triangles as
exemplified in fig 11. This can be a problem since we want
to use classical distance computation algorithms that usually
work with convex polyhedrons. It can be solved in different
ways, either by moving or removing the guilty vertex, or by
cutting the hull in convex parts. However experiments with
large variety of objects from real applications never exhibited
such a case. We thus did not program anything to handle it,
we simply check the convexity of the obtained hull.

B. Overall algorithm

Computing the distance for two (non necessarily convex)
polyhedra O1 and O2 is done in two steps (fig 12).

Fig. 12. Overall algorithm. The steps in the gray area are computed off-line.

First an off-line computation produces the two STP-BV
BV O1 and BV O2, as well as the underlying convex polyhe-
dron CPO1 and CPO2 and some data related to the voronoi

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 10

regions of the STP-BV. This data is aimed at precomputing
all that is possible so that the on-line distance computation
is as fast as possible. The implementation of this part has
not been optimized simply because it occurs off-line. The
second step is this on-line computation: we first run a classical
collision detection algorithm on CPO1 and CPO2 that returns
the witness points P 1

min and P 2
min as well as the closest

(polyhedral) features PF1 and PF2. From this output we
then have to find the closest smooth features SF1 and SF2

of BV O1 and BV O2. Once these features are obtained we
are able to compute the distance δ = d(SF1, SF2), the new
witness points SP 1

min and SP 2
min, and nd the normal unit

vector to BV1 in SP 1
min, the three latter data being needed

for gradient computation.
The computation of the distance and theses data requires to
know how to find them for three kinds of pairs of smooth
features: sphere-sphere, sphere-torus and torus-torus. The first
case is trivial, the two other ones are detailed in the section
VI.
Associating smooth features to polyhedral features is based on
two heuristics:

• for a polyhedral feature the smooth feature is to be
found among its corresponding smooth features and the
latters’ direct neighbours as described in the following
subsections,

• the choice of the smooth feature SFi is based on the
position of P j

min regarding the voronoi region of SF 0
i ,

the smooth feature directly linked to PFi (i = 1 and
j = 2 or the contrary).

For example, if PF1 is a vertex and SF 0
1 its associated small

sphere, the position of P 2
min regarding the voronoi region of

SF 0
1 decides whether SF1 is SF 0

1 or one of the adjacent
toruses or (big) spheres.
As shown in V-Clip introducing paper [11], closest features
are reached when the witness point of each object is inside the
voronoi region of the closest feature of the other object. This
property should apply SP 1

min, SP 2
min, SF1 and SF2. Tests

with objects such as used in the examples of section VII show
that such is not the case in 0.3% of the computation requests.
In more than 99% of these “failed” cases, the witness point is
in a neighbouring smooth feature’s voronoi region so a single
test is enough to correct the mischoice. However, the witness
points pairs found without correction are in most cases really
close to the correct ones (error between points are less than
0.1mm). We thus chose not to make corrections, for the sake
of speed.

C. Associating a smooth feature to a vertex

The smooth voronoi region of a small sphere always lies
strictly inside the polyhedral voronoi region of the associated
vertex. If a polyhedral witness point is given to be in the
voronoi region of a vertex, it can thus be either in the smooth
voronoi region of the associated small sphere or in one of the
adjacent smooth voronoi regions (toruses or big spheres of the
edges and faces that contain the vertex).

The association computation is based on the following re-
mark: the vertex belongs to every surrounding smooth voronoi

Fig. 13. Intersection of a plane with the voronoi regions related to a vertex.
Smooth voronoi regions are those from fig 8, darker cone is the voronoi region
of the vertex.

region limits as well as to its own voronoi cone. Therefore,
this vertex can be considered as the focal point of a projection
onto a plane: a plane is then chosen above the vertex, whose
normal vector is inside the voronoi region of the small sphere.
Projection of the smooth voronoi regions onto this plane is the
same as the intersection of the voronoi regions with the plane
as shown in fig. 13. The rightmost picture of this figure shows
the obtain 2D regions in which the witness point of the other
object is projected. The projection of this point lies inside the
the outer polygone since it is in the polygonal voronoi region
of the vertex. Finding which 2D region the projection of the
witness point lies in is strictly equivalent to finding which
smooth voronoi region the witness point is in, but it requires
less calculations. To speed up the process even more, a tree of
tests is built during the off-line process in order to minimize
the average number of tests needed to determine the region.

To sum up: if PFi is a vertex, SFi can be the associated
small sphere or one of the smooth features associated to the
edges and faces PFi belongs to. P j

min is projected in a plane
where the corresponding smooth voronoi regions have already
been projected. The projection of P j

min determines SFi.

D. Associating a smooth feature to an edge or a face

Because the smooth voronoi region of a small sphere is
always strictly inside the polyhedral voronoi region of the
corresponding vertex, the polyhedral voronoi regions of the
edges and faces never intersect with it. But smooth and
polyhedral voronoi regions of big spheres/faces intersect in
various ways with the regions of toruses/edges, depending on
the shapes of the faces. In all cases, the tests to be made are
to know on which sides of the smooth voronoi limit planes
the witness point is.

When a (triangle) face is non-obtuse, the smooth voronoi
region of its associated big sphere contains its polyhedral
voronoi region. The center of the sphere projects inside the
face so that the angle between the face and the limits of the
voronoi region of the sphere is greater than 90 degrees. There
is thus no test to do: the smooth feature is this sphere.

With the same argument, if an edge is between two non-
obtuse faces or is not the longest side of an obtuse face, then
its polyhedral voronoi region contains the smooth region of

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 11

its torus. A witness point in the polyhedral region can then be
either in the torus region or the regions of the two adjacent
spheres. A test is there needed to determine on which side of
the limit planes the point is.

If a face is obtuse, then its polyhedral voronoi region
intersects with the smooth region of the torus associated to
its longest edge. A single test is then needed to know wether
the witness point is inside the smooth region of the associated
big sphere or not.

If an edge is the longest one of an obtuse face then there
is no test to perform to know whether the witness point is in
the smooth voronoi region of the face’s big sphere.

A problem arises if a face is really thin while the surround-
ing shape of the object is quite flat: it may happen that smooth
voronoi regions intersect several polyhedral voronoi regions
in addition to the previously cited ones. However, when the
radius of the big spheres R is large compared with the object
size, such an intersection is unlikely to occur or will occur
very far from the object, at a distance where the error would
not impact the output distance or its gradient. This is why we
kept the solution:

• if PFi is a non-obtuse face then SFi is the associated
big sphere,

• if PFi is obtuse, a test has to be made to know whether
SFi is the big sphere or the torus associated to the longest
of PFi,

• if PFi is an edge and not the longest edge of an obtuse
face, the position of P j

min regarding two planes has to be
known to determine whether SFi is the torus or one of
the sphere associated to the adjacent faces,

• if PFi is the longest edge of a single face, a test has to
be made to know whether SFi is the torus or the sphere
associated to the other face,

• if PFi is the longest edge of both its adjacent faces, then
SFi is its associated torus.

V. COMPUTING PROXIMITY DISTANCES’ GRADIENTS

Gradient computation has already been studied. We follow
the scheme exposed in [12]: with our previous notation, we
have ∂δ

∂q
(q) = nT

d

(
∂SP 1

min

∂q
(q)−

∂SP 2

min

∂q
(q)

)
. The optimality

condition then yields that the relative motion of the smooth
witness points on the boundary surfaces is orthogonal to the
normal unit vector nd so that the expression becomes simpler:

∂δ

∂q
(q) = nT

d

(
∂SP 1

min∈BV O1

∂q
(q)−

∂SP 2
min∈BV O2

∂q
(q)

)
(12)

The two last derivatives correspond to the velocities of the
points that match with the witness points at q and are fixed
to the objects.
We only have a small but important difference with [12]: our
normal unit vector nd is not derived from the position of
the smooth witness points, but directly computed from the
smooth features. Indeed, in the case of a contact between the
objects, the witness points coincide and thus cannot define a
vector. Since for example in an optimization process distance
constraints may prevent from reaching the criterion minimum,
such a contact case is not unlikely to occur, and actually did

when we generated postures as presented in VII.
In the penetration case however, when there are multiple
witness point pairs, it is not possible to define this vector, but
the gradient is undefined anyway.

For a point P of fixed coordinates (x, y, z) in the local frame
of an object O at the configuration(q), the gradient has the
following expression: ∂P

∂q
(q) = xJ1(q) + yJ2q(q) + zJ3(q) +

J4 obtained by deriving P (q) = R(q)(x, y, z)T + T (q) =
xC1(q)+yC2(q)+zC3(q)+T (q) where R is a rotation matrix,
Ci its columns and T is the translation vector. The Ji are
the gradient matrices of the Ci and T . These matrices can
be analytically computed beforehand and are called hereafter
pre-gradient matrices.

VI. IMPLEMENTATION

For the implementation of our algorithm, we use V-Clip
since it meets the requirements of returning witness points
and features. However, V-Clip does not perfectly handle the
penetration case because it stops to the first intersecting pairs
of features. This is in most cases enough to handle “slight”
penetrations, but we added a heuristic to handle some deeper
ones.

A. Sphere-torus and torus-torus distances

Computing sphere-torus and torus-torus distances reduces
to 3D point-circle and circle-circle distance computations
respectively. The former has a simple geometrical solution,
the latter has been proved in [13] to have no analytical one.
Effective and accurate computation of circle-circle distance
has been presented in [14]. Point-circle distance can also
be found in this paper as a sub-problem of the circle-circle
computation.

(a) point-circle distance (b) circle-circle distance

Fig. 14. Basic distance computation.

However these algorithms cannot be used directly: since
we use an inner part of the toruses, we need to compute the
maximum distance with arcs. For the point-circle distance, the
farthest point is the opposite of the nearest one so that there
are few changes to do. With the notation of figure 14(a), the
distance is

√
R′(R′ + 2 ‖CQ‖) + CP 2.

For the circle-circle distance, we could adapt the algorithm
in [14] to find a maximum instead of a minimum, and stop
at the first maximum. This is possible because, since we use
only part of circle, we have a single maximum. It appeared

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 12

however that in our case, the following iterative algorithm was
more efficient (fig. 14(b)): we first determine a point on the
circle associated to the feature SF1 by taking the intersection
of this circle with the projection onto its supporting plane of
the line passing through the centers of the circles, C1 and C2.
We chose the intersection M0

1 so that C1C2.C1M
0
1 > 0. From

this point, we compute M0
2 , the farthest point on the second

circle. Then M1
1 from M0

2 and so on until convergence is
achieved.

B. Computation time

�
�
�
�

�

�

�

�

�

�

	

�

�

� ��

�
�

�
�

��
�

�
�
�

��
�

�
��

�
�

�
�
�

��
�
�

� � � � � �
� � � � � � � �

� � � � � � �

� � � � � � � � � �

number of vertices of an object

co
m

pu
ta

tio
n

tim
e

in
 µ

s

�
�
�
�

�

�

�

�

�

�

	

�

�

� ��

�
�

�
�

��
�

�
�
�

��
�

�
��

�
�

�
�
�

��
�
�

� � � � � �
� � � � � � � �

� � � � � � �

� � � � � � � � � �

number of vertices of an object

co
m

pu
ta

tio
n

tim
e

in
 µ

s

Fig. 15. Computation time for small relative movements

co
m

pu
ta

tio
n

tim
e

in
 µ

s

!

"

!

"

$!

$ "

% !

&
' (')'

&
*
'

'
+
'

,
*
'

(
)'

*
('

-&
'

&
.
.
'

'
+
*
'

+
'
)'

/ 0 1 2 3 4

5 3 6 7 8 9 1 :

; < 8 5 3 : 9 7

4 < : 0 ; < 8 5 3 : 9 7

number of vertices of an object

co
m

pu
ta

tio
n

tim
e

in
 µ

s

!

"

!

"

$!

$ "

% !

&
' (')'

&
*
'

'
+
'

,
*
'

(
)'

*
('

-&
'

&
.
.
'

'
+
*
'

+
'
)'

/ 0 1 2 3 4

5 3 6 7 8 9 1 :

; < 8 5 3 : 9 7

4 < : 0 ; < 8 5 3 : 9 7

number of vertices of an object

Fig. 16. Computation time for large relative movements

Computation time was recorded for several objects’ sizes
and two extents of relative movements. Distance is computed
between two identical geodesic spheres of radius 20cm cov-
ered with STP-BV whose parameters are r = 1cm and R =
10m. The size of an object is measured by the number of its
vertices (directly related to the number of faces : f = 2(v−2)
with f number of faces and v number of vertices). For each
object size, one million calls were made to the algorithm.
Between two calls, both objects rotated around their three
axis, and the relative distance was changed, with a total range
of 40cm and so that there can be slight penetrations. In the
results presented in 15, the rotation angles are about 2 degrees
and the average distance change is 2mm. For the graph in
fig. 16, angles are about 20 degrees and the average distance
change is 2cm. Angle increments are taken so that the same
configuration never appears twice.

In both cases, the results are given for one average call. As
expected, only V-Clip is sensitive to the amount of variations
between two consecutive configurations, and the continuous
gradient layer is almost in constant time with respect to the
number of vertices: pre-gradient and gradient computations
are done in constant time of 2 microseconds (1.4 and 0.6 re-
spectively), the distance computation which mainly computes
the feature associations slightly increases (almost like a square
root) with the number of vertices. This is most certainly due
to the larger amount of data attached to more complex objects
but this increase is small compared with V-Clip’s . We have
no explanation so far for the sudden increase between 812 and
1002 vertices.

Computations were performed on a 3.4GHz Pentium Xeon
with 2GB of RAM.

VII. APPLICATION: FREE-COLLISION HUMANOID

POSTURE GENERATION

Now that the method is explained, and packaged into a
C++ code, we will demonstrate it in actual robotic context as
announced in the introduction section. The posture generator
proposed in the planner described in [1] is now improved
by integrating this method to obtain optimized collision-free
postures for a humanoid robot HRP-2.
Roughly speaking, this posture generator is an optimization
under constraints program: constraints are physical and ge-
ometrical, such as stability, required body positions (robot-
environment contacts for example), and collisions. The crite-
rion to be minimized can be any user-defined smooth function.
In the following scenarios we use a very simple one that gives
fairly human-like postures for upright positions:

f(q) =

nj∑
i=1

(
qi −

qmin
i + qmax

i

4

)2

(13)

where nj is the number of joints, and qmin
i and qmax

i are the

joint limits of qi.
qmin

i +qmax

i

2 being the middle of the joint

limits, qmin

i +qmax

i

4 is the middle between this middle and 0, the
configuration with all angles to 0 being the one in figure 17.
For human likeness, some more advanced but also more
time-costly criteria have already been suggested, such as
those mentioned in [15]. The problem of collision avoidance
in posture generation has also been addressed in [16] and
in [17]. Authors in [16] generate postures from an optimization
formulation; spheres have been used as a coverage to define
collision avoidance constraints. The problem of their method
is in the number of spheres needed to cover the virtual avatar
while keeping a good precision of the shape, along with the
combinatorial complexity of the sphere pairs to be considered
as constraints. Authors in [17] generate postures from inverse
kinematics and prioritized tasks, but this method is not smooth
with all observers’ primitives, moreover observers need to be
specified by the user and are context specific.

Figure 17 shows both the geometrical model of HRP-2 and
its corresponding STP-BV that is computed off-line prior to its
use in the experimental scenarios. The model of each HRP-2
body contains between 50 to 800 vertices. Parameters of STP-
BV are r = 1cm (safe collision margin) and R = 10m (chosen

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 13

Fig. 17. HRP-2 robot and its STP-BV

to have few difference between safe margin and maximal
margin).

Hereafter are snapshots of the optimized posture obtained
in various scenarios, which were extracted from the usual
working day of a HRP-2 robot. In all cases, the humanoid
is asked to reach defined goals described here as 3D points
(and an eventual orientation). We simply ask for matching
specific points of the humanoid robot (e.g. a given point on
the right gripper, another one on the left foot or another one
on the left gripper...) with corresponding target 3D points in
the free space. These matches are described as constraints to
be satisfied in the optimization problem.
Concerning auto-collision, robot pairs that need to be selected
for checking have been studied in [18] and recently in [19].
In the latter, the use of look-up tables was proposed to deal
with composed joints, so that the safety margins of bounding
volumes does not restrain the movement possibilities for this
kind of joint. We also focused on that point; however, since
we needed to have and compute continuous gradients for all
constraints, such a method was not possible, and we had to
use specific analytical functions to prevent collision around
the hip, waist, neck and shoulder joints. These functions
were obtained either geometrically or by experimentations on
a real HRP-2 robot. The proximity distances between each
pair of bodies must be positive (or above a given threshold,
which is anyway already taken into account by the very
nature approximation of the STP-BV). The gradients of these
constraints are computed by the proposed method. We also
define obstacles to be avoided and describe body-obstacle pairs
to be checked in the same way we did for auto-collision.
There are 117 auto-collision constraints; 8 of them are analyt-
ical constraints, the other being computed with the STP-BVs.

Pick-can-from-fridge scenario: the robot is asked to grab a
can in a fridge. For that it is constrained to have its two feet
on the floor and its left hand around the can, as shown in the

leftmost picture in fig. 18. Collisions with the environment are
checked between bodies of the robots and: the fridge doors, the
fridge left panel, the shelves, the carafe and the clementines
in front of the can. 33 pairs are involved. The robot’s initial
posture is its 0 posture, in front of the fridge In the second
picture, collisions are not checked: there are collisions between
the left knee and the lower door, the left forearm and the
carafe, the chest and the inner side of the upper door, the arm
and the upper door. The next two pictures show the posture
obtained when collisions are checked.
In this scenario, and much more in the third one, the robot is
quite stretched and close to many of its joint limits because
of collisions (with the environment in this case, mainly with
itself in the at-work scenario). It results in a narrow feasible
space. The computation time is thus quite big: for this scenario
it is 0.469 seconds; the distance function is called 11,675
times and the gradient 9,855 times (without collision checking,
the posture is computed in 32 milliseconds). The result is
obtained in 74 iterations of FSQP. The same posture for a
human character should be obtained much faster thanks to a
bigger number of DoFs; HRP-2 lacking wrist DoF is a serious
limitation here and in the third scenario.

Enter-car scenario: a posture is tested where the robot has to
place a foot on a car floor in front of the driver seat. Placement
constraints here are to have the left foot on the floor outside
the car and the right one inside. The robot must be stable with
only the left foot contact. Collisions with the environment
are checked for the driver seat, the door, its window, the
dashboard, the steering wheel and parts of the bodywork. 28
pairs are checked. The robot is initially at its 0 posture and
placed in the middle of the car (but is not colliding with parts
that are checked).
Leftmost picture of fig 19 shows the output of the posture
generator when collisions are not taken into account. Colli-
sions between the left hand and the door as well as between
the right knee and the dashboard can be seen. The next
three pictures are different views of the collision-free posture
obtained. Computation for this posture takes 79 milliseconds
(16 without collision checking), over 23 iterations; the distance
function is called 2,898 times and the gradient 2,882 times:
although the space for the right leg is really narrow, the chest
and the other limbs have a quite wide feasible space.

At-work scenario: HRP-2 is on a ladder in a warehouse and
tries to reach a crate. For this scenario, both feet are placed
on the same step, right hand is asked to grasp the banister
and the left hand must reach a point far in the front-left side.
Collisions are checked with the bodies and all the relevant
ladder parts (not with the stairs behind the robot for example)
so that there are 15 pairs checked. Initial posture is in front
of the ladder, angles being at 0. This scenario was designed
to exhibit some self-collisions, as can be seen on the second
picture of fig. 20: there are collisions between the right arm
and both waist and chest. Additional collisions occur with the
environment: lower leg and step, thigh and banister. These
collisions are avoided in the final posture shown in the leftmost
and two rightmost pictures. Computation time in this case is
3.328 seconds, the distance function is called 54,993 times
and the gradient 33,000 times. FSQP needs 265 iterations.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 14

Fig. 18. Pick-can-from-fridge scenario. From left to right: illustration of the target, posture obtained without collision avoidance constraints, successful
free-collision posture found (side and up views).

Fig. 19. Enter-car scenario. From left to right: without collision avoidance constraints, successful free-collision posture from three different view points.

Fig. 20. At-work scenario. From left to right: general view of the result and the context, posture obtained without collisions avoidance constraints, successful
free-collision posture from two different view points

VIII. DISCUSSION

If we increase the radius of the big spheres, the STP-
BVs flatten. Consequently, the witness points travel faster
on the objects for a same relative movement, so that the
gradient’s variations are larger: the bigger the radius is, the
closer we are to the non-strictly convex case, with its gradient
discontinuities. This has been noticed when using R = 100m:
the posture generator converged more slowly in this case. The
difference is noticeable in the At-work scenario where the
generation needs 5,016 seconds for 393 iterations (with 88,505
calls to the distance routine and 49,000 to the gradient), and
huge with the fridge scenario (3,078 seconds, 282 iterations,
68,931 distance calls and 37,935 gradient calls).

As stated in theorem 2.3, gradient continuity is achieved as

soon as one object is strictly convex. There is then no particu-
lar need to have both objects of a pair covered with STP-BV,
and we could compute C1 distances between one STP-BV
and one polyhedral object. However computation time in this
case is not expected to decrease because the complexity is
roughly the same as for two STP-BV: features have to be
found for the two objects from the output polyhedral features
of the classical detection algorithm (there may be a change
of feature for the polyhedral object), and the most costly
elementary distance computation for two STP-BV, namely
the circle-circle distance computation, would be replaced by
a line-circle distance computation the cost of which is even
greater (see [14]).

Considering the on-line computation time, it is thus not

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 15

interesting to develop an algorithm for STP-BV/Polyhedron
distance computation. Still, such an algorithm would have
an advantage regarding the pre-computations: if each object
needs a STP-BV, every time a new object is inserted in a
scenario or an object is changed, some off-line computations
have to be done; if a convex polyhedron is kept, only voronoi
regions have to be determined (which is already done by V-
Clip for example) as well as their graph. It would be more user-
friendly to have to compute STP-BV for objects that seldom
change, while ensuring that every checked pair has at least
one STP-BV. In the case of our application, this simply means
that the robot has to wear STP-BVs while the objects of the
environment remain as polyhedrons.

This issue is very important in robotics because it opens
doors for hardware porting and exploitation in designing robust
low-level control implementations. Continuity of the proxim-
ity gradient makes it possible to be also used for tracking
tasks other than avoiding self-collisions and collisions. For
example, devising reactive controllers for exploring motions
at a predefined distance along a given object/obstacle of the
environment can possibly benefit from proximity gradients
continuity. This issue is being actively investigated by our team
for the humanoid HRP-2. Note that the intrinsic problems that
may occur is the penetration case, see subsection II-D, will
not be practical control problems.

It must also be pointed out that the computation cost for the
pre-gradient matrices is quite heavy, as shown in the figures
of section VI. However, it is distributed between the gradient
computations of most of the constraints - not only the collision
constraints. These constraints are therefore computed a bit
faster in the case of the posture generator case.

IX. CONCLUSION

A new method for computing proximity distances with
continuous gradient has been presented. The main idea is
to ensure strict convexity of the bounding envelope that is
computed off-line. We suggest to use near-convex hulls built
with spheres and toruses patches. The assembly is made in
such a way as to at least guarantee C1. For the time being,
the distance computation is based on the closest features
of the underlying polyhedral convex hull using V-Clip. The
presented algorithm has been successfully exemplified through
a collision-free (including self-collision) optimization-based
humanoid posture generation for HRP-2.

Future work will investigate the following points:
• the guaranteed continuity properties of the proximity

distance allows its inclusion as part of the constraints
in the up-coming implementation of the multi-sensory
task sequencing for sensor-based control of the humanoid
HRP-2 [20];

• the packaged software will be also part of the opti-
mization software which is being developed for robotic
trajectories generation [4];

• research on a methodology which allows automatic and
minimum necessary body pair assignments for auto-
collision checking in a poly-articulated structure;

• V-Clip is used as an intermediary step for computing
the proximity distance between a pair of bodies. We

consider getting rid of this step by designing a new
version of the proximity distance algorithm, certainly on
the same basis as V-Clip, which would define Voronoi
regions and compute distance using directly the STP-BV,
and possibly adapt it to distance between STP-BV and
polyhedrons. This will definitely eliminate the problem
of fig. 11 and the approximations made for the smooth
features association;

• in the same way as for auto-collision, we aim at re-
ducing the number of constraints to be used between
the robot and objects composing its surrounding environ-
ment. Space partitioning techniques and bounding volume
hierarchies have proved to be efficient and we are likely
to use them.

APPENDIX I
PROOF OF THEOREM 2.2

Theorem 2.2: The witness points of the minimum distance
between two convex bodies are continuous functions of q if
at least one of the bodies is strictly convex.
Proof: First, if no body is strictly convex, witness points
are not necessarily unique thus we have no continuity.
We only need to demonstrate that strict convexity implies
continuity. The idea driving the demonstration of witness
points continuity consists in building some small volumes
that include old and new witness points of the minimum
distance, and to show that the volumes tend to points when
the infinitesimal transformation tends to zero.
Let’s consider two convex objects O1 and O2, the latter
being strictly convex. Because of this strict convexity, spheres
exist that completely include O2 while being tangent to it,
whatever the tangent point. Let R be the radius of one of this
spheres.
We consider the objects for a relative position described by
q0. P 1

0 and P 2
0 , respectively on O1 and O2 are the unique

witness points for this position. pmin(q0) = (P 1
0 , P 2

0)T

Let’s move to the position q0 + ∆q. We note P 2
0,∆ the new

position of the point P 2
0 and P 1

min and P 2
min the new witness

points so that pmin(q0 + ∆q) = (P 1
min, P 2

min)T .
Since δ satisfy a Lipschitz condition, there is a real K such
as |δ(q0 + ∆q)− δ(q0)| ≤ K∆q, see also [10].
Let P1

1 and P2
1 be respectively the tangent planes to O1 and

O2 in P 1
min and P 2

min. P2
2 (resp. P1

2) is the plane parallel to
P2

1 (resp. P1
1) distant of δ(q0) + K∆q to P 1

min (resp. P 2
min).

S2 is the sphere tangent to O2 in P 2
min with a radius R. Its

center C2 is aligned with P 1
min and P 2

min. A1 and A2 are the
points of P1

2 and P2
2 on this alignment and B is one point on

the intersection of P2
2 with S2 (this intersection is not void

as soon as ∆q is small enough).

Let σ =
√
|δ2(q0 + ∆q)− δ2(q0)|. σ tends to 0 when

∆q do so.
We define C1∆q (resp. C2∆q) as the cylinder of axis

(
P 1

minP 2
min

)
and radius A2B + σ (resp. A2B) delimited by P1

1 and P1
2

(resp. P2
1 and P2

2). A2B +σ is the maximal distance between
P 1

min and P 1
0 , obtained for the extreme case where P 2

0,∆ is
on the boundary of C2∆q.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 16

Fig. 21. Demonstration of the continuity of Pmin.

Let E∆q = C1∆q × C
2
∆q.

By construction
(
P 1

min, P 2
min

)
and

(
P 1

0 , P 2
0,∆q

)
are in E∆q.

A1P 1
min = A2P 2

min = δ(q0) + K∆q − δ(q0 + ∆q),
A2C2 = R−A2P 2

min,
and A2B =

√
(R22

−A2C22
).

Since δ is a continuous function, A2P 2
min and A1P 1

min tend
to 0 when ∆q tends to 0. Thus, A2C2 tends to R and A2B
tends to 0.
Both cylinders tend to a single point: E∆q tends to{(

P 1
0 , P 2

0,∆q=0

)}
=

{(
P 1

0 , P 2
0

)}
.

We then have pmin(q0 + ∆q) =
(
P 1

min, P 2
min

)T
tends to

pmin(q0) =
(
P 1

0 , P 2
0

)
which demonstrates the continuity in

q0.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] A. Escande, A. Kheddar, and S. Miossec, “Planning support contact-
points for humanoid robots and experiments on HRP-2,” in IEEE/RSJ
International Conference on Robots and Intelligent Systems, Beijing,
China, October 2006, pp. 2974–2979.

[2] C. Lawrence, J. L. Zhou, and A. L. Tits, “User’s guide for cfsqp version
2.5: A c code for solving (large scale) constrained nonlinear (minimax)
optimization problems, generating iterates satisfying all inequality
constraints.” [Online]. Available: citeseer.ist.psu.edu/341929.html

[3] S.-H. Lee, J. Kim, F. C. Park, M. Kim, and J. E. Bobrow, “Newton-type
algorithms for dynamics-based robot movement optimization,” IEEE
Transactions on Robotics, vol. 21, no. 4, pp. 657– 667, August 2005.

[4] S. Miossec, K. Yokoi, and A. Kheddar, “Development of a software
for motion optimization of robots– application to the kick motion of
the HRP-2 robot,” in IEEE International Conference on Robotics and
Biomimetics, 2006.

[5] G. van den Bergen, Collision detection in interactive 3D environments,
ser. The Morgan Kaufmann Series in Interactive 3D Technology, D. H.
Eberly, Ed. Morgan Kaufmann Publishers, 2004.

[6] C. Ericson, Real-time collision detection, ser. The Morgan Kaufmann
Series in Interactive 3D Technology, D. H. Eberly, Ed. Morgan
Kaufmann Publishers, 2005.

[7] F. Bonnans, C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, Nu-
merical optimization- Theoretical and Practical Aspects. Springer,
September 2002.

[8] J. Y. Lee and H. Choset, “Sensor-based construction of a retract-like
structure for a planar rod robot,” IEEE Transactions on Robotics and
Automation, vol. 17, no. 4, pp. 435–449, August 2001.

[9] H. Choset, B. Mirtich, and J. Burdick, “Sensor based planning for a
planar rod robot: Incremental construction of the planar Rod-HGVG,”
in IEEE International Conference on Robotics and Automation, vol. 4,
April 1997, pp. 3427 – 3434.

[10] S. Rusaw, “Sensor-based motion planning in SE(2) and
SE(3) via nonsmooth analysis,” Oxford University Computing
Laboratory, Tech. Rep., 27 September 2001. [Online].
Available: http://citeseer.ist.psu.edu/476565.html;ftp://ftp.comlab.ox.ac.
uk/pub/Documents/techreports/RR-01-13.ps.gz

[11] B. Mirtich, “V-Clip: fast and robust polyhedral collision detection,” ACM
Transactions on Graphics, vol. 17, no. 3, pp. 177–208, 1998.

[12] O. Lefebvre, F. Lamiraux, and D. Bonnafous, “Fast computation of
robot-obstacle interactions in nonholonomic trajectory deformation,”
in International Conference on Robotics and Automation, Barcelona,
Spain, April 2005. [Online]. Available: http://www.laas.fr/∼olefebvr/
Publications/icra05.pdf

[13] C. A. Neff, “Finding the distance between two circles in three-
dimensional space,” IBM J. Res. Dev., vol. 34, no. 5, pp. 770–775, 1990.

[14] D. Vranek, “Fast and accurate circle-circle and circle-line 3d distance
computation,” J. Graph. Tools, vol. 7, no. 1, pp. 23–32, 2002.

[15] K. Harada, K. Hauser, T. Bretl, and J.-C. Latombe, “Natural motion
generation for humanoid robots,” in IEEE/RSJ International Conference
on Robots and Intelligent Systems, 2006, pp. 833–839.

[16] K. Abdel-Malek, J. Yang, T. Marler, S. Beck, A. Mathai, X. Zhou,
A. Patrick, and J. Arora, “Towards a new generation of virtual humans,”
International Journal of Human Factors Modelling and Simulation,
vol. 1, no. 1, pp. 2–39, 2006.

[17] M. Peinado, R. Boulic, B. Le Callennec, and D. Méziat, “Progressive
cartesian inequality constraints for the inverse kinematic control of
articulated chains,” in EuroGraphics, 2005.

[18] J. Kuffner, K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, and
H. Inoue, “Self-collision detection and prevention for humanoid robots,”
in IEEE International Conference on Robotics and Automation, Wash-
ington DC, May 2002, pp. 2265–2270.

[19] K. Okada and M. Inaba, “A hybrid approach to practical self collision
detection system of humanoid robot,” in IEEE/RSJ International Con-
ference on Robots and Intelligent Systems, 2006, pp. 3952–3957.

[20] N. Mansard and F. Chaumette, “Task sequencing for sensor-based
control,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 60–72,
February 2007.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2007 17

PLACE
PHOTO
HERE

Adrien Escande is PhD student at the university of
Évry. He graduated from École Nationale Supérieure
des Mines de Paris (2005) with major in Robotics,
where he participated to the French robotic cup.
His main topic of research is contact planning for
humanoid robots and virtual human avatars. He
worked in the European project CAMELLIA and
is currently partly involved in ImmerSence FP6
project. He joined the AIST/CNRS French-Japanese
Robotics Laboratory (JRL) in 2006.

PLACE
PHOTO
HERE

Sylvain Miossec Sylvain Miossec is a research
associate at the Centre National de la Recherche
Scientiqgue (CNRS) working at the AIST/CNRS
Joint Japanese-French Robotics Laboratory (JRL).
He obtained his Master and Ph.D. from École Cen-
trale de Nantes, France respectively in 2001 and
2004. He then obtained a JSPS fellowship for a
two-years post-doctorate at the AIST/CNRS Joint
Japanese-French Robotics Laboratory (JRL), until
2006. His research interests includes biped robots,
humanoid robots, optimal motion, walking control

and stability, multi-body simulation.

PLACE
PHOTO
HERE

Abderrahmane Kheddar is currently professor in
computer science and control, and is the head of the
virtual reality and haptics group of the University
of Évry. He received a DEA (Master of science
by research) and the Ph.D. degree in robotics,
both from the University Paris 6, France. He was
several months a visiting researcher at the formal
Mechanical Engineering Laboratory (Bio-Robotics
Division) in Japan. Since september 2003 he took
a secondment position as a Directeur de Recherche
at the Centre National de la Recherche Scientifique

(CNRS), France. Since then he is the Codirector of the AIST/CNRS joint
Japanese-French Robotics Laboratory (JRL) in Japan. His research inter-
ests include haptics (sensing, display and computer haptics), humanoid
robotics, sensory and physically-based simulation, telerobotics and electro-
active polymers. He is a founding member of IEEE RAS chapter on haptics.
He coordinated the CNRS national specific actions, the one dealing with
collision detection and the other on haptics. He is the coordinator of the
FP6 European project ROBOT@CWE, and is the CNRS representative of
the FP6 European network of Excellence in Virtual Reality INTUITION,
the European coordination action in Presence PEACH, of the PF6 integrated
project ImmerSence, the FP5 project TOUCH-HapSys.

