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ABSTRACT

This paper is devoted to the stability study of a walking gait for a biped. The walking gait is
periodic and it is composed of a single support, a passive impact, and a double support. The
reference trajectories are described in function of the shin orientation versus the ground of the
stance leg. We use the Poincaré map to study the stability of the walking gait of the biped.
With the assumption of no perturbation in the tracking of the joint configurations of the biped,
the Poincaré map is of dimension one. With a particular control law in double support it is
shown theoretically and in simulation that a perturbation error in velocity of the shin angle
can be eliminated in one half step only. Therefore, with this possibility, it is shown that it is
possible for the biped to reach a periodic regime from a stopped position in one half step.

1 INTRODUCTION

Studies dedicated to bipeds walk can be divided in three categories: static walk, dynamic
walk and purely dynamic walk. Static walk consists in walking sufficiently slowly so that
dynamics can be neglected. The stability criterion is then a static criterion. Dynamic walk
consists in taking partially into account the dynamics of the biped, for example by measuring
reaction forces and using the Zero Momentum Point (ZMP) criterion, defined in [1]. For us,
this criterion is a necessary but not sufficient criterion for stability of the walk, and is in fact a
physical constraint during walk, such as a no take off of the legs constraint. Purely dynamic
walk consists in taking into account the dynamics by using a dynamic model of the biped.
This approach allows to study theoretically the stability of the walk but is for the moment
restricted for simple bipeds, for which the dynamic model is not too complicated. Simple
bipeds considered are generally planar bipeds without feet [2-8]. For bipeds without feet the
purely dynamic approach is generally necessary since such bipeds are under actuated. For this
type of studies, the work can be to generate reference trajectories [5, 6], to study the stability
of the walk [2, 3, 4, 7], and to control the biped [2, 8]. Recent theoretical results have been



obtained on the stability of a cyclic walk with under actuated single support (SS) phase and
with instantaneous double support (DS) phase [4, 7].
What we propose here is a stability study for a walk with under actuated SS phase and non-
instantaneous DS phase. The stability study is restricted for a one-dimensional space by using
Poincaré map and supposing that the actuated joint reference trajectories are exactly followed.
With an appropriate control in DS, it is shown the interest of this phase to improve the
stability of the walk. This stability property is due to the over actuation of the DS phase.
We will firstly present the biped, the reference motion and the dynamic model used for the
biped. Then we will present Poincaré map, the control law in DS, and some theoretical results
for the existence of a zone of convergence to the reference motion in one step. Finally, we
will present simulation results.

2 DEFINITION OF A REFERENCE MOTION AND RESULTING SIMPLIFIED
MODEL

2.1 Biped presentation
A scheme of the studied biped is presented

figure 1 with some notations. It is a biped only
moving in the sagittal plan, composed of 5 links (2
tibias, 2 femurs and the trunk), 4 actuated joints (the 2
knees and the hips), and without feet.
We note Γ=[Γ1  Γ2  Γ3  Γ4]T the torque vector, q=[α
δ1  δ2  δ3  δ4]T the joint variables with orientation of
the biped in space, and X=[qT xt zt]T the configuration,
orientation and position vector, where (xt,zt) is the
position of the center of gravity of the trunk. R1=[R1x
R1z]T and R2=[R2x R2z]T are respectively the ground
reaction forces of feet 1 and 2.

2.2 General considerations
We consider a walk with SS phase, impact, and

DS phase.
For this biped the single support phase is under

actuated (five degrees of freedom  and four actuators). The strategy used is then to prescribed
the reference trajectories of the four joint variables j , (j=1...4)δ  in function of the orientation
variable of the shin, α. So for a given α, the biped configuration is completely determined in
SS. However the behavior of the angular variable α results of the dynamic equations of the
under actuated biped.

In DS the biped has three degrees of freedom and is over actuated. It is then possible to
prescribe the reference trajectories of only three variables: we choose j j= ( ), (j=1,2)δ δ α
similarly to the single support phase, and the angular variable α is defined as a polynomial
function in time. With these three variables the biped motion is determined completely in DS.

2.3 The Single Support Phase
The reference trajectories of actuated joints, i ,SS , (i=1...4)δ  are defined as polynomials

fourth order in α:

δ1

δ2

δ3

δ4

α

(xt ,zt)

Γ1

Γ3

Γ2

Γ4

R1

R2

x

z

S

leg 2

leg 1

Figure 1 : Scheme of the biped
in sagittal plan, and notations
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The temporal evolution of α results of the dynamics of the biped.
Supposing δi,SS (i=1…4) are tracking exactly equations (1) and applying the theorem of the
total angular momentum in S (the contact point between the stance leg tip of the biped and the
ground), and writing expression of angular momentum, we can define a simplified dynamic
model (2) to describe the motion of the robot in SS.
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M is the biped mass, g the acceleration of gravity, and xG(α) is the horizontal component of
the position of the center of gravity of the biped. σ is the angular momentum around S.
The second equation of (2) comes from the expression of the angular momentum given by (3),
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where coefficients fk(δi) (k=1…5) depend only of the biped parameters and α, since δi(α)
(i=1…4) depend only of α, and where iδ  (i=1…4) depend only of α and α  since
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i

δ αδ α α α
α

∂=
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 (i=1…4) by time derivation of (1).

2.4 Simplified Model for the Passive Impact
The impact is considered rigid, passive, instantaneous, with impulsive ground reactions,

and with a null restitution coefficient. At the impact instant, an inversion of leg role is
performed. The full model of impact is given in [6]. It comes from integration of (7) between
just before impact and just after impact. From manipulation of this full impact model with
relation (8) and supposing that reference trajectories are exactly tracked, we can obtain the
following relation:

bα α+ −= (4)
The notation "+" means just after impact and "–" just before, b is a term depending on the

biped configuration at impact and on iδ
α

∂
∂

 (i=1…4) just before impact.

2.5 The Double Support Phase
We define the reference trajectories of δi,DS=δi,DS(α) (i=1,2) as polynomials of α:

2 3
, 0 1 2 3( ) 1, 2i DS i i i ia a a a iδ α α α α= + + + = (5)

Taking into account that the biped is over actuated α is defined as a polynomial of time:
2 3

0 1 2 3( )t a a t a t a tα = + + + (6)
Then the motion of the biped is defined by δi,DS (i=1,2) and α(t). Since the biped is over
actuated, and (5) and (6) are supposed exactly tracked, no dynamic model is needed to obtain
the simplified DS motion. But the current study uses the physical constraints during DS
(neither slipping nor take off of the feet, and torque limits). We then present the total
Lagrangian model during DS, from which constraints are calculated:

1 1 2 2A( q )X H( q,q ) D D ( q )R D ( q )RΓ Γ+ = + + (7)
Matrix dimensions are A(7×7), H(7×1), DΓ(7×4), Di(7×2).
The previous model is associated with these position, velocity, and acceleration constraints
specifying that the legs remain on the ground:
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di(X) represents the feet position and Vi represents the feet velocity, i=1,2.

2.6 Determining the reference motion
We have to find all the coefficients of the polynomial functions (1), (5) and (6). Taking

into account that the motion is periodic and is continuous between each phase leads to
relations between polynomial coefficients. It is then possible to reduce the number of
parameters to 18 (see the principles of this reduction in [5]). An optimization process is used
to choose these 18 parameters so that: an energy criterion is minimized, physical constraints
are satisfied during the walk (such as no slipping, no take off of the feet, and limit torque).
More details for the motion definition are given in [5].

3 POINCARE STABILITY STUDY OF THE REFERENCE MOTION

3.1 Presentation
We only study stability of resulting dynamics after supposing that the actuated joints

trajectories are exactly followed (this assumption is a good approximation if we consider a
sufficiently efficient control, without too much important perturbations). The resulting
dynamics consist in α dynamics given by equations (2) in SS, by α  discontinuity given by (4)
at impact and by α dynamics in DS depending on its control only, presented in the following
part.

For this stability study, we use the Poincaré map, which consists in representing the
state of a cyclic motion of a system from one period to the following. For the walk considered
here, with the previous assumptions, the Poincaré map is a function from only a one-
dimension space to a one-dimension space (see also [3, 4, 7]). In this paper we represent the
Poincaré map of α . In the Poincaré map, a cyclic motion is represented by an invariant point,
and this cyclic motion is stable if the slope at this point is between –1 and 1. In the next part
we will present the control of α in DS so that convergence to the cyclic motion is as fast as
possible. Then we will present a proof of existence of a zone of Poincaré map so that
convergence is obtained in one step.

3.2 Control of ααααDS in Double Support
The principle of this control is used in [2] (study in the Poincaré map of the switching

condition from transition motion to reference motion) and can be compared to a sliding mode
control with a changing gain as large as possible and where the surface is c( )α α  (the notation
"c" designates the reference cyclic motion). The expression of this control is:

max c

min c

c

( , )  if  ( ) ( ) 0
( , )  if  ( ) ( ) 0

( , )     if  ( ) ( ) 0c

α α α α α α α
α α α α α α α α

α α α α α α α

− <
= − >
 − =

(9)

max ( , )α α α  and min ( , )α α α  are respectively the maximum and minimum possible acceleration
to satisfy the physical constraints (no slipping, no take off of the legs, torque limits). We here
show the way to determine max ( , )α α α  and min ( , )α α α . The physical constraints considered
are the following:



                      =1,2    for no take off  
   =1,2    for no slipping  

           =1..4   for torque limits
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Riz,min>0 is the minimal normal ground reaction and fmax (< f, the real friction coefficient) the
maximal friction coefficient of the ground. These constants are security margins.
Our goal is firstly to write these constraints explicitly with respect to α, α  and α , and then to
extract the more restrictive constraints on α .
Combining (1), (5), (8) into (7) we obtain seven relations between α, α , α , Rix, Riz, Γj :

1 21 2R RA ( ) H ( , ) D D ( )R D ( )Rα α Γ α αα α α α Γ α α+ = + + (11)
We want to determine the 8 unknown Rix, Riz,, Γj in function of α, α  and α , whereas there
are only seven equations in (11). There are an infinity of solutions that we parameterize by R1x
(see [5] for a justification of this choice). So we obtain the following equations:

1 2 2 1( ) ( , , )
T

z x z j xR R R B C Rα α α α Γ = +  (12)
With the seven equations (12) we can rewrite the fourteen constraint equations (10) as:

1( ) ( , , ) 0i i xC D Rα α α α+ ≤ i=1..14 (13)
By taking the more restrictive constraints, the system (13) can be reduced to the two
following inequalities : min max( , ) ( , )α α α α α α α< <  where
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We now present a representative result of the control in the phase plane ( ),α α , see figure 2
(all angles of figures are in radian). For a given initial velocity, less in module than the initial
cyclic one, the minimal acceleration is applied and we can see on figure 2 that the ( , )α α
motion converges to the cyclic one. Then after the intersection with the cyclic motion, it
follows exactly the cyclic motion. We then have a null error at the end of the DS phase.
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figure 2 : comparison of phase plans, for
the cyclic motion and for the motion with
a null initial velocity (particular case of

start from stop)

figure 3 : evolution of acceleration
  min max, ,α α α  versus α



Figure 3 shows cα  for the cyclic motion and the corresponding evolution of max ( , )α α α  and

min ( , )α α α .
We next present a proof of the existence of an initial velocity zone for which the error at the
end of the step is zero.

3.3 Existence of one step convergence zone
To show the existence of a one step convergence zone, we start from the hypothesis that

the nominal motion satisfies all strict constraints (13) (see figure 3, the graph c( )α α  between
both graphs max ( , )α α α  and min ( , )α α α ). The first part of the demonstration is about the
convergence of the DS phase. The second part uses results of [7] to extent convergence results
on a whole step. An important idea of the demonstration is that we use the phase plan
representation ( , )α α . Let us note that with the choice of the sign convention for α , its
boundaries are such as: fDS iDSα α≤  and DS 0α < . We note "i" for initial and "f" for final.

Here is the start hypothesis on the DS phase:
Hypothesis: ∀ α∈[αfDS, αiDS], ∃ R1x, ∀ i=1..14 1( ) ( , , ) 0i i xC D Rα α α α+ <

From this hypothesis, by continuity of the constraints (13) with respect to α  and α ,
we can show that there exist a zone around the cyclic motion for which the strict constraints
(13) are still satisfied:
∃ max 0α∆ > , ∃ max 0α∆ > , ∀ α∈[αfDS, αiDS], then ∃ R1x, such as ∀
α ∈[ maxcα α− ∆ , maxcα α+ ∆ ], ∀ α ∈[ maxcα α− ∆ , maxcα α+ ∆ ], ∀ i=1..14, we have

1( ) ( , , ) 0i i xC D Rα α α α+ < (15)
For the next proof steps we will consider the case ( ) ( )i c iα α α α> . We apply the

acceleration, maxcα α α= − ∆  (results with this acceleration will also be available with control
(9) since max min ( , )cα α α α α− ∆ > ). Then it is possible to show that ( )α α  will cross ( )cα α .
To show this, we study the function:

c( , ) ( )α α α α α α∆ = − (16)
The derivative of ( , )α α α∆  with respect to α is:

( ) c c c c c c max

c c c

d d dtd d dt        
d d dt d dt d

α α α α α α αα α α
α α α α α α α α α α

∂ ∆ ∆= − = − = − = − +
∂

(17)

where tc and t are times depending on whether the cyclic or the current motion are followed.

The value of ( , )α α α
α

∂∆
∂

 evaluated on the cyclic motion is:

max
c

c

( , ) 0αα α α
α α

∆∂∆ = <
∂

(18)

Then by continuity of ( , )α α α
α

∂∆
∂

 in α :

∃ ε>0, ∃ 1
max 0α∆ > , ∀ α∈[αfDS, αiDS], ∀ α ∈[ cα ,

1
maxcα α+ ∆ ], ( )α ε

α
∂ ∆ < −

∂
(19)

Let us now consider the function 2 ( , ) ( )iDS iDS iDSα α α ε α α α∆ ∆ = − − + ∆ . We have 2α ε
α

∂∆ = −
∂

and 2 ( , )iDS iDS iDSα α α α∆ ∆ = ∆  and so if we take 0iDSα∆ <  sufficiently small, ∃ α∈[αfDS, αiDS]
so that ( )2 , 0iDSα α α∆ ∆ = .



Moreover, by integrating (19) in α we obtain ∀ α∈[αfDS, αiDS] 2α α∆ ≥ ∆ . Then we have also
for a sufficiently small 0iDSα∆ < , ∃ α∈[αfDS, αiDS] so that 0α∆ = .
Finally by generalizing this result whatever the sign of iDSα∆ , we can write that:
∃ ,maxiDSα∆ >0, ∀ iDSα ∈[ , ,maxiDS c iDSα α− ∆ , , ,maxiDS c iDSα α+ ∆ ], , 0fDS fDS cα α− = (20)

If we now apply results of [7] we have an analytic relation between the velocity at the
beginning of the DS iDSα  and the velocity at the beginning of the previous SS iSSα :

( )iDS iSSaα α= (21)
[7] also provide a condition of the existence of a periodic stable gait for the biped with SS and
instantaneous DS. In our case, since DS is over actuated there always exists a periodic stable
gate but satisfying the constraints (10) is not then guaranteed.

If we consider the Poincaré map of iDSα  we will have from (20) and (21) that:
∃ ,maxiDSα∆ >0, ∀ ( )iDS nα ∈[ , ,maxiDS c iDSα α− ∆ , , ,maxiDS c iDSα α+ ∆ ],

, , ,( 1) ( ( 1)) ( ) ( ( )) ( ) 0iDS iDS c iSS iSS c fDS fDS cn a n a a n aα α α α α α+ − = + − = − = (22)
If we consider the Poincaré map of iSSα  we will have from (20) by taking

( ) ( )( )1 1
,max , ,max , , ,max ,min ,iSS iDS c iDS iSS c iDS c iDS iSS ca aα α α α α α α− −∆ = − ∆ − + ∆ −  and from (21)

that:
∃ ,maxiSSα∆ >0, ∀ ( )iSS nα ∈[ , ,maxiSS c iSSα α− ∆ , , ,maxiSS c iSSα α+ ∆ ],

, ,( 1) 0iSS iSS c fDS fDS cnα α α α+ − = − = (23)
We have then demonstrated for both Poincaré representations of iDSα  and iSSα  the

existence of a null slope zone of the Poincaré map, which corresponds to a zone for which
convergence is obtained in one step.

4 SIMULATION RESULTS

We show here the Poincaré map of issα  (Figure 4) and of idsα  (figure 5) with the control law
presented. For better representation of Poincaré map we represent opposite of α , since 0α < .
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figure 4 : Poincaré map of velocity α  at the
beginning of SS: ( ) ( )( )iSS iSSn 1 P nα α+ =
figure 5 : Poincaré map of velocity α  at the
beginning of DS: ( ) ( )( )iDS iDSn 1 P nα α+ =



We can see that in both Poincaré maps the null slope zone is large. The presence of such a
zone guarantees the convergence from the attraction domain in a finite number of steps. The
attraction domain is limited on Poincaré map of iSSα  for small velocities by the fall back of
the biped during SS phase (because of the initial speed too small) and for high velocities by
the torque limitation in SS phase.
The attraction domain for Poincaré map of iDSα  is not limited in small velocities. It means
that the biped can start walking from stop. Furthermore, since the Poincaré map slope is zero,
this start phase leads directly to the cyclic motion in one step. The limitation in high speed is
the same as in the other Poincaré map.
It is also interesting to see that the zone of convergence in one step of the iDSα  Poincaré map
is far larger for small speeds than high speeds. We can see in Figure 3 that it is due to the fact
that the distance between the cyclic motion and the constraints is far larger for 0cα α− <  than
for 0cα α− > . This leads to the idea it would be good to equilibrate distance between cyclic
motion and constraints and enlarge it as far as possible.

5 CONCLUSION

We have shown an efficient control law for stabilization of walk of the biped. We thus see the
interest of double support phase. We showed the existence of the one step convergence zone.
We saw in simulation results that the one step convergence zone is quite large and even
allows start from stop. However, a drawback is that the control used is sensible to model
errors, since the acceleration constraints depend on the model. To increase robustness, we
could increase the security distance with constraints, or use a force sensor measure.
In a future work, we will try to find numerically for a walking motion the largest zone that
allows convergence in one step, in order to characterize a good reference motion from a
stability point of view. We will also try to stop the biped with the used control law.
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